
COMPOSITIO MATHEMATICA

P. FRANCIA
Some remarks on minimal models I
Compositio Mathematica, tome 40, no 3 (1980), p. 301-313
<http://www.numdam.org/item?id=CM_1980__40_3_301_0>

© Foundation Compositio Mathematica, 1980, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions géné-
rales d’utilisation (http://www.numdam.org/conditions). Toute utilisation
commerciale ou impression systématique est constitutive d’une infrac-
tion pénale. Toute copie ou impression de ce fichier doit contenir la
présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1980__40_3_301_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


301

SOME REMARKS ON MINIMAL MODELS I

P. Francia

COMPOSITIO MATHEMATICA, Vol. 40, Fasc. 3, 1980, pag. 301-313
© 1980 Sijthoff &#x26; Noordhoff International Publishers - Alphen aan den Rijn
Printed in the Netherlands

Introduction

Let X be a complete non singular algebraic variety, over an
algebraically closed field of any characteristic.
We say that X is a relatively minimal model if any birational

morphism f : X ~ Y, over a non singular algebraic variety Y, is

actually an isomorphism.
We say also that X is an (absolutely) minimal model if any

birational map g : Y - X, where Y is a non singular variety, is actually
a morphism. After the Hironaka’s main theorem it is known that any
birationality class of algebraic varieties has at least a relatively
minimal model.

When is such a model an (absolutely) minimal model?
In the theory of surfaces there is a complete answer to this

problem: (Castelnuovo-Enriquez-Zariski): Any birationality class of
surfaces which is not related to the class of ruled surfaces (i.e. which
does not contain a surface of the form C x P1, where C is an algebraic
curve) has an (absolutely) minimal model.

In this paper we give two examples in order to show that a similar
theorem does not hold for 3-dimensional varieties. Our technique is
essentially due to Moisezon (see [7]), who has given an example of a
not algebraic relatively minimal model using the same method.

However we must proceed very cautiously because in this case

the models are requested to be algebraic varieties.
Although the following two examples are built using the same

method, they show different pathologies.
The first example gives two relatively minimal models X and Y of

0010-437X/80/03/0301-13$00.20/0



302

Kodaira dimension &#x3E; 0. Even if they are different, the two models
have a big open set U (i.e. codim XB U = codim YB U &#x3E; 1) where they
are isomorphic, so the rank of the Neron-Severi group of X is equal
to the rank of the Neron-Severi group of Y.

The second example gives two relatively minimal birationally
isomorphic models. The first of them, X, has an ample canonical
system. The second one, Y, has a canonical system with fixed

components and base curves. So we have rg NS(X)  rg NS( Y).
In this paper we denote by threefold a non singular algebraic

three dimensional variety defined over an algebraically closed field of
arbitrary characteristic.

1

In this section we recall some definitions and some standard lem-

mas. Let X be a threefold and let Y be a non singular subvariety of
X. We consider the blow up diagram:

where P denotes the exceptional divisor. Then we have:

LEMMA 1.1: Denoting by ~Y and ~p the ideals of Y and P respec-
tively, and by Cp(l) the tautological sheaf on P, one has P = P(i*.jy)
and j*.jp = CP(l).

PROOF: See [2] p. 186.

DEFINITION: Let Z be a subvariety of X, Z not contained in Y. The
proper transform Z of Z is the Zariski closure in X of lT-l(Z fl
(XB Y)).

LEMMA 1.2: Suppose codim Z = 1. Then we have 03C3*(Z) = Z + sP
where s = minxEY sx and sx = {maxsEN s such that z E ms, z local

equation of Z at x.}

PROOF: See [4] p. 142.

COROLLARY 1.3: Under the same hypothesis as 1.2 we get:
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where.

PROOF: It follows from 1.2.

COROLLARY 1.4: Suppose dim Y = codim Z = 1, Y C Z. We denote
by F a fiber of the morphism p : P ~ Y. Then we have:

PROOF: From 1.2 we obtain: By
1.1 it follows 

Calculating the Chern classes we conclude.

Now we consider the surfaces Fn = Proj(Op1(n) ~ Cpi) and its

canonical projection p : Fn ~ P’. Then we have:

LEMMA 1.5: There exist two standard sections A, B on Fn such
that:

PROOF: For (i), (ii) see [9] p. 153, while (iii) follows from [6]
Lemma 6.1.

LEMMA 1.6: There exists a canonical pl-isomorphism
f : P(Op1(p) (p Op1 (q)) ~ Fp-q. Moreover f*OFp_q(l) is canonically

We still denote, for the sequel, by A and B the divisors f *A and
f *B on P(tp-(p) ÉB Op1(q)).

2

In order to construct the examples, we shall study two special
birational maps.
Let X be a threefold, and let C be a curve on X such that:
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We take the blow up of X along C:

By 1.1 we have Q ~ P(Op1(1) ~ Op1(1)). Since P(Op1(1) ~ Op1(1)) is

isomorphic to the Segre product Fo = P’ X P’, we can consider p : Q -
C as the projection po : P’ x P1 ~ P1 on the first factor. In this case, by
1.5(ii), sections A, B occur as fibers of the projection p2 : pl X P1 ~ Pl
on the second factor; so, from 1.5(iii), 1.6, the tautological sheaf CQ(l)
is isomorphic to ~2i=1 p*iOp1(1). Therefore, we can use j* ~Q = OQ(1)
and Artin criterion [1] to define a morphism 03C4:Z ~ Y in the category
of algebraic spaces, which is an isomorphism on ZBQ and such that
the restriction to Q is the projection on the second factor.
By construction, the map 03C4 03BF 03C3 -1 is a birational non regular trans-

formation between two non singular three-dimensional algebraic
spaces X and Y, which is defined outside two non singular curves C
and C’ = T(Q) on X and Y respectively.
Now we get a criterion of algebraicity for the algebraic space Y:

PROPOSITION 2.1: Y is an algebraic (projective) variety if there
exists a contraction of C:

such that 9 is an algebraic (projective) variety.

PROOF: Take an affine neighborhood U of {P}. We put V =

(h 03BF 03C3)-1(U), F = 03C3* L-1 ~ ~nQ where 0 is an invertible sheaf on X
and deg L~ Oc = n &#x3E; 0.

We are going to prove that for it
suffices to show thai

Now the exact sequence:
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gives:

It is easily seen that

Moreover, since ~Q is h 03BF 03C3-ample by E.G.A. III 4.7.1, we have
By induction we

hence we have the exact sequence:

Therefore we can lift any neighborhood W = Q - supp( s ), s E r( Q,
p * 0(ns» of the fibers of P2 to the open subset W = V - supp(s *),
where s * E ~(V, F~s) and p(s *) = s.
To prove that Y is an algebraic variety it suffices to show (see [5])

that the morphisms:

are surjective for all W. Taking in account that F|W ~ Cw and
H’(V, F~s ~ ~rQ) = 0 for r &#x3E; 0, this follows from the following:

LEMMA 2.2: Let U be an open subset of an algebraic variety X. Let
D be an effective divisor and V = UBD. Then for every coherent sheaf

PROOF: Take a 1-cocicle , where the Uij are
affine open sets. We have

hypothesis, it is a trivial cocicle, and so is {aij, U;; fl V}.
Let now X be a projective variety. Then we can take on Z the

sheaf:

We claim: J for the Leray
spectral sequence we have:
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The first cohomology group is equal to zero if n ~ no for E.G.A. III,
2.2.1; moreover the vanishing of the last cohomology group of the
sequence follows by use of the same arguments as previously.
So we get the exact sequence for n ~ n0:

On the other hand the sheaf (h 0 03C3)* OX(n) Q9 fF is generated by its
global sections outside Q if n * nl. In fact we have the isomorphism:

so outside Q the sheaf (h 03BF 03C3)*OX(n) ~ F can be looked as

OX(n) 0 (h 0 03C3)*F thus the claim follows from E.G.A. III 2.2.1.
Let us assume now N = max{n0, n1}; then (h 03BF 03C3)* OX(N) ~ F is

generated by its global sections on Z. Therefore |(h 03BF 03C3)*OX(N +
1) ~ F| separates points outside Q, and cuts the linear system

|P *2 OP1(n)| on Q.
Thus the morphism induced by the linear system I(h 0 03C3)*Ox(N +

1)~F is a contraction of Q on the second factor. Finally, by the
unicity of the contraction, it follows that the projective image of
|(h03BF03C3)*Ox(N + 1) ~ F| is isomorphic to Y.

By use of the previous construction, we get the following second
map: let X be a threefold, and let C be a curve on X with the

properties:

Take the blow up of X along C:

Let B be the section of negative self-intersection on P. We shall prove

From the exact sequence:
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we get:

Therefore section B satisfies the hypothesis (i), (ii); thus, reasoning
on X as previously, we obtain the following diagram:

By construction f = 03C4 03BF 03C3-1 03BF 03C1-1 is an isomorphism on XBC. We shall
study the exceptional divisor of f on Y: let P be the proper transform
of P on Z. By 1.4 we have (É - Q) = (P · B)F + c1(OQ(1)). On the
other hand we recall that OQ(1) ~ ~ 2i=1 p*1Op1(1), and (P - B) = - 1, so
(É - Q) is a fiber of the projection of Q on the second factor.

Therefore T induces on P the contraction of the section B to a point,
and it is easy to see that the image of P is a plane E on Y.
Now lemma 1.3 gives the relation:

and from 1.5, 1.6 it follows that

Also in this case we get a criterion of algebraicity for Y:

PROPOSITION 2.3: Y is an algebraic variety (projective) if there
exists a contraction of C:

such that X’ is an algebraic variety (projective).

PROOF: We have only to prove that the couple (X, B) satisfies the
hypothesis of the proposition 2.1.
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Take an affine neighborhood U of the point {P}. We put V =
where 0 is an invertible sheaf on X

~p is hop-ample. Hence, as in proposition 2.1, we have the exact
sequence:

On the other hand the rational map associated to the linear system
|OP(nB + nF)1 contracts B to a point. Therefore we can take a section
s E r(P, tp(nb + nF)) such that W* = P - supp(s) is a complete
neighborhood of the section B. By (*) it is possible to lift W* to an
open subset W of X such that F|w ~ (Jw on W. Then we consider the
morphism W ~ Spec r( W, Ow), induced from the isomorphism of the
ring of regular section. We want to show that this is the required
contraction.

For it suffices to see that the sections of F(W, 6w) separate points
outside B, or equivalently Hl(W,.ix0.iy)=0 for all not necessary
distinct points x, y E WBB.
From the exact sequence:

we have:

It is easy to see that H’(P, OP((sn + r)B + (sn + 2r)F) = 0, hence
R1(h 03BF 03C1)*F~s ~ ~x ~ ~y = 0 by descending induction on r; therefore

We can conclude by using lemma 2.2.
Suppose now that X is projective. To prove the proposition in this

case we have to show that the map associated to the linear system
|(h 03BF 03C1)*OX’(n) ~ F| or the map associated to a sufhciently large
multiple of this system is the required contraction. This follows by
using the same argument of the proposition 2.1.
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In order to construct the counterexamples as we mentioned in the
introduction we take a threefold X such that:

(1) X is a relatively minimal model,
(2) Pn(X) ~ 0 for some n &#x3E; 0,
(3) X contains a curve C satisfying the properties:

(iii) there exist a projective variety X and a morphism h : X -
X, which is the contraction of C.

Let now Y be the projective model obtained from X as in the

previous section. We have to check that Y is a relatively minimal
model.

We shall prove the existence of threefolds satisfying the properties
(1), (2), (3).

Henceforth we assume k = C.

n = 1 Take the hypersurface F in A4 defined by the equation:

where Gi are homogeneous forms of degree two, and Hi E m3(0), so
that F is non singular outside the origin O. Thus the hypersurface F
has an isolated triple point in the origin 0, and it contains the plane
X= T= 0.

Let V C P’ be the projective closure of F, and let à : V ~ V be the
blow up of the point O. We have the diagram:

We shall prove that V satisfies the properties (1), (2), whenever the
degree m of F is big enough.

Let E = p3 be the exceptional divisor of the blow up : P ~ p4. We
have tip = 03C3*Op4(-5) 0 Op(3E), hence, by adjunction formula:

Since V is the proper transform of V in P, we get Ùp(ib =
Op(- 3E) ~ 03C3* OP4(m) using 1.2 and the fact that F 03B5 m3(0). In con-
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clusion we have 03A903BD~03C3*Op4(m-5) ~ O03BD, therefore the canonical
sheaf av is effective and generated by its global sections for m &#x3E; 5.

So V is a relatively minimal model’ of positive genus. Now let e be
the intersection line of the cubic S with the proper transform L on
the plane X = T = 0. We have Nsl ~ Cp’(-1) since t is an exceptional
line on the cubic S, and N’ Os(- 1) since S is the exceptional
divisor of the blow up Cr, therefore Nvs/l ~ Ùpi(- 1). So we get the exact
sequence:

Whence 

Hence in order to find a morphism which contracts it suffices to
prove that |L(n)| is base points free for n » 0.

It is easily seen that 0(n) is generated by global sections on VBS’
for n &#x3E; 0, in fact, by EGA III 2.2.1, the sheaf ú*.;t(n) is generated by
its global sections for large n.
Moreover one has L(n) ~ Os ~ Os(1) ~ Os(l). Since the sheaf

ts(l) 0 Os(l) is generated by its global sections, from the exact

sequence:

we can deduce that 0(n) is generated by its global sections on V if
we prove that H1( V, L(n) ~ ~s) = 0. By E.G.A. III 2.2.1 we have

0. We recall that 9s is à-ample, thus, from the exact sequence:

we get by induction R1ú*:£(n) Q9 ~s = 0. So we can prove the vanish-
ing of H1(V, L(n) ~ ~s) by use of Leray spectral sequence. Hence V
also satisfies the property (3).
Then, by using the construction of the section 2, we can find a

threefold Y and a birational map f : Ù - Y.

1 In fact the exceptional divisor of a birational morphism F : X - Y of smooth varieties
would be a fixed component of the canonical system lkxl.
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Finally we shall prove that Y is not isomorphic to V. To do this, we
remark that there exist no surfaces 0160 on V which are isomorphic to
the "Del Pezzo" surface S4 ~ P4, having the conormal sheaf isomor-
phic to OS4(1). In fact for such a surface it follows by adjunction
formula:

But on V this is true only for the cubic surface S, for 03A903BD is the

pull-back of an ample sheaf.
Conversely it is easy to see that the image of the cubic S on Y is

the "Del Pezzo" surface S4 ~ P4 with conormal sheaf isomorphic to
OS4(1).

n = 2 Take the product P’ x P2 and its projections P 1: P1 x P2 ~ pl
and P2: P1 x P2. We consider in a plane {a}  P2 a line e and two
distinct points Pl, P2 on l. Consider the following blow up diagram:

of Pl, P2. Let é be the proper transform of e on V. We want to show
that Nv-l ~ OP1(- 1) EB Cpi(-2). Let L be the proper transform of {a} x
P2. From 1.3 we have NL-l ~ OP1(- 1) and NI - OL(-EI-E2). Since Pi,
P2 belong to l, the restriction of NL to l coincides with Cpi(- 2). Then
by the exact sequence:

and by the vanishing of Ext1(OP1(-2), OP1(-1)), we get NV-l ~
OP1(-2) ~ OP1(- 1). Let us denote by L the sheaf

exists a section 03B1 03B5 0393(V, L~6) such that div(a) ~ l = 0, with D =

div(a) irreducible and non singular.
It suffices to show that Y is generated by its global sections. For

this we choose on V the linear system |(p2 03BF 03C3) * Op2(1) ~ ~E1+E2| of the

proper transform of the quadrics trough l. We only have to prove
that:

a complete linear system.
(3) fv is base points free.
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By the exact sequence:

(03B1) is equivalent to: H1(V,(p1 03BF 03C3)*Op1(1) ~ (p2 03BF 03C3)*Op2(1)) = 0, and
this follows by Leray spectral sequence and Künneth formula. (0) is
almost straightforward. Then we can define a double covering 03C0 : V ~
V ramified exactly on supp D such that (7r*D)red defines a section of
T(V, 03C0* L~3). (See [8]). We prove that V verifies properties (1), (2),
(3). Since D ~l= 0, the line i is contained in the unramified set of ir.
Therefore 03C0*l splits in two disjoint components l1, l2. isomorphic to
l and such that Nvli = N§, i = 1, 2. We shall prove that there exists a

morphism which contracts ( to a point. For the claim the sheaf 0 is
generated by its global sections and so it is zr*0. Moreover it is easy
to see that L.C~0 for all curves C=l andL.I=0. So by
projection formula 03C0*L·C &#x3E; 0 for all curves C &#x3E; 0, C~~i and

03C0L·~i = 0.
Then the map associated to the linear system 03C0*Lncontracts the

two curves ei, ~2 to a same point; now we can factorize this map by
use of the Stein factorization, and the resulting morphism with

connected fibers is the required contraction.
We conclude by showing that lliç is ample. We have 03A9v=

write: 03A9v~L~3 = p * 2 Cp2(l). This sheaf is generated by its global
sections as tensor product of sheaves generated by its global sections.
Moreover, we have: P*2Op2(1)·~=1, P*2O(1)·C~0 for all curves

C &#x3E; 0, so we get ilvQ9 L~3. C &#x3E; 0, ~VC &#x3E; 0. Hence the ampleness of
ily follows from [3] Prop. 4.6, 4.4. Now we can use the map of

section 2 to get a birational model Y of V. For the ampleness of ay,
we have that the unique fixed component of the pluri-canonical
system of Y is the plane E, i.e. the exceptional divisor of the map
f : V --&#x3E; Y. But this plane has normal bundle isomorphic to ûp2(-2),
therefore E is not contractible to a simple point. Consequently Y is a
relatively minimal model.

Added in Proof

The construction of the counterexample in the case n = 1 is incor-

rect since the hypersurface V takes some ordinary double points
outside the origin. However, if W is the blow up of the double points,
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we can work on W exactly as we work on V in the example, being
the desingularization of W a relatively minimal model in the category
of algebraic varieties. (In fact the quadrics blow up of the double
points are not contractible to regular varieties (see for example M.
Cornalba, Two theorems on modification of analytic spaces, In-

ventiones Math. 20, p. 244) and they are the only fixed components of the
canonical system). So the conclusions of the example are true for the
model W.
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