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Introduction

Let E be an even-dimensional real Hilbert space, and let O(E) be
the full orthogonal group of E. Let o- be the spin representation of
O(E) on the space S of spinors. Then a is a projective irreducible
unitary representation of O(E) on S. The subgroup SO(E) also acts
projectively and splits S into two irreducible subspaces S+ and S-,
the spaces of positive and negative spinors. Let f be a spinor field, i.e.
a map from U, an open set in E, to S. Then the Dirac operator P
sends f to another spinor field, provided that f is differentiable. If f is
twice differentiable then

where à is the spinor Laplacian: the spinor Laplacian simply acts as
the Laplacian on each scalar component of f(x). Further, P

exchanges positive and negative spinor fields.
In this article, we recast the whole of the above paragraph when E

is infinite-dimensional. Subject to restrictions and qualifications which
we state explicitly, the assertions in the above paragraph remain true
in the infinite-dimensional case.
At the infinite-dimensional level, the spin representation was dis-

covered by Shale and Stinespring [18]. These authors worked with a
holomorphic spinor representation of the C*-Clifford algebra. This
representation is unitarily equivalent to a Fock representation of the
C*-Clifford algebra; this point of view is taken by the present author
in [14], where the subject of spinors in Hilbert space is taken a little
further.
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Again at the infinite-dimensional level, the theory of the projective
tensor product and the associated nuclear operators provides the

perfect framework for the Dirac operator. Grothendieck has written
an elaborate account of this theory [8]. We shall need only a small
fragment of this theory, including the universal property of the

projective tensor product, which replaces continuous multilinear

maps by continuous linear maps. The projective tensor product of the
Hilbert space E with itself must be sharply distinguished from the
ordinary Hilbert space tensor product: for the former is isomorphic to
the space of trace-class operators in the trace-norm, whereas the
latter is isomorphic to the space of Hilbert-Schmidt operators in the
Hilbert-Schmidt norm, by a classic result of Schatten [16].
Concerning differential calculus in Banach space, we shall need

only the chain rule for the first derivative of a composite function,
and the fact that the n th derivative of a vector-valued function is a

symmetric multilinear map. Our references here are Cartan [3] or
Dieudonné [4].

In 1967, Gross published an account of potential theory on Hilbert
space which incorporates the Laplacian 2loc, defined as the trace of the
second Frechet derivative. The correction term which makes à.

formally self-adjoint and negative-definite is discussed, in the context
of abstract Wiener space, by Elworthy [5, p.163]. This more sophisti-
cated version of the Laplace operator has been studied, in a slightly
different context, by Umemura [19]. In particular, its eigenvalues and
eigenspaces can be found: the eigenvectors are Fourier-Hermite

polynomials. We have not been able to find a "Dirac operator"
associated with this version of the Laplacian.
The theory of the projective tensor product provides the right

framework for a basis-free account of nuclear operators, the

Laplacian 0394~, the spinor Laplacian, and our Dirac operator P. We are
extremely grateful to the referee whose comments led to much

improved basis-free proofs in the present article.
In section 1 we give a brief review of the Dirac operator, based on

section 1.1 of Hitchin’s article [10], in order to elucidate our opening
paragraph. We use his notation P for the Dirac operator. In section 2,
we describe the projective tensor product. In section 3, we define the
Clifford multiplication and the Dirac operator at the infinite-dimen-
sional level. In section 4, we find a formula for the n th power of the
Dirac operator (Theorem 1), give a basis-free definition of the spinor
Laplacian, and prove that the square of the Dirac operator is equal to
the spinor Laplacian (Theorem 2). In section 5, we discuss very
briefly the half-spinors and their relation to the Dirac operator.
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1. Review of classical Dirac operator

Let E be an even-dimensional real Hilbert space. Then factoring
out the ideal generated by elements of the form x Q9 x - ~x~2.1 in the
tensor algebra Q9 E, we get a finite-dimensional algebra A(E), the
Clifford algebra of E. We have E Cd(E) such that x2 = I/xl/2.1.
Suppose dim E = 2k, then the complexification d(E) Q9 RC is a full

matrix algebra End S, where S is a 2’-dimensional complex vector
space. We thus have a linear map

the Clifford multiplication. Let f be a differentiable map from U, an
open set in E, to S. Then f’(x) lies in HomR(E, S) for each x in U. But
HomR(E, S) ~ E ~RS so we have

Then Pf is the compound map

That is, Pf = m 0 f’. The linear operator P is the Dirac operator.
Let {e1, ..., e2kl be an orthonormal base in E. Then

where f;(x) = f’(x) . e; = ~f(x)/~xi.ei so that

where
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This is a standard expression of the Dirac operator in terms of the
partial derivatives f;(x) and the ci-matrices. Note that the ci-matrices
act on the space S of spinors.

Let {~i(x), ~2(x), ...} be the 2k+l components of f (x) with respect to
an orthonormal basis in S viewed as a real space. If f is a twice

differentiable map from U to S the space of spinors, then we have

where à is the Laplacian. The operator p2 is therefore the spinor
Laplacian. Since P is self-adjoint, P and p2 have the same null

space. P is an elliptic differential operator and its kernel is the

finite-dimensional space of harmonic spinors.
The spin group Spin(2k) lies in A(E). In fact, Spin(2k) comprises all

"words" xl ... x2n of even length in A(E) where x,, ..., x2" are unit
vectors in E. We have an exact sequence

with P(XI ... X2n) = 03C4(X1) ... T(X2n) where T(x) is reflection in the hyper-
plane perpendicular to x. Since A(E) acts on S we have a unitary
representation, the spin representation, of Spin(2k) on S. This

representation is not irreducible: it splits as a direct sum of two
irreducible subrepresentations, the half-spin representations. The

irreducible subspaces are denoted S+ and S-. Spinors in these sub-
spaces are called positive and negative spinors. Let f be a spinor field,
that is, a differentiable map from U to S. If f (x) lies in S+ for all x in
U, then Pf (x) lips in S-: if f (x) lies in S-, then Pf(x) lies in S+. In this
sense we say that the Dirac operator exchanges positive and negative
spinor fields.

This article is a first step in the project of investigating the Dirac
operator on infinite-dimensional spin-manifolds: this project was
proposed by de la Harpe [9, p.260]. The reader will find information
on spin-manifolds in [1, 2, 9, 10, 13].

2. The projective tensor product

Let E and F denote two fixed real separable Hilbert spaces and let
G denote a real Banach space. The real Banach space of continuous

linear maps from E to G is denoted f(E; G). The algebraic tensor
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product of E and G is denoted E O G. There exists a natural map
u~ of E O G into 0(E; G) of which the image is the space of
continuous linear maps of finite rank from E to G. If u = x Q9 y then
û =  x, . &#x3E; y where  . , . &#x3E; is the inner product in E.
The projective tensor product E Q9 G arises in the following way.

We put the following norm on E O G:

Then Il.111 is a cross-norm in the sense that

for all vectors x in E and y in G. The completion of E O G is denoted
E Q9 G. The map u~ extends by continuity to a continuous linear
map of norm ~ 1 from E Q9 G to J(E; G), still denoted u~:

LEMMA 1: The natural map E 0 G~J(E; G) is injective.

PROOF: This result is well-known: see Grothendieck [8, chapter I,
Proposition 35]. It depends on the fact that the Hilbert space E

enjoys the approximation property: the identity map can be ap-

proximated, uniformly on every precompact set in E, by continuous
linear maps of finite rank.

The image of the natural map E ~ G ~J(E; G) is the vector

space of nuclear operators. When G = E, the image of the map

is the vector space of nuclear (i.e. trace-class) operators on E, and the
il Il, norm on E 0 E corresponds to the trace norm on the vector
space of trace-class operators. This is a classic result of Schatten [16,
p.119].

Let U be an open set in E and let f : U--F be differentiable.
Thus we have

where f’ is the Frechet derivative. Now f’(x) is nuclear for all x in U
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if and only if there is a map ~1: U~E ~ F such that f’ = ai - 0,,
where a is the natural map E ~ F~(E; F). If f’(x) is nuclear for
all x in U then such a map 01 exists and is unique, by Lemma 1.
Let m be a continuous bilinear map from E x F to F. By the

universal property of the projective tensor product, m determines
uniquely a continuous linear map ri : E ~ F~F such that rl(x ~ y)
= m (x, y) for all x in E and y in F.

Suppose again that f’(x) is nuclear for all x in U. We have the

following commutative triangles:

Let P be defined by

The Dirac operator arises when we make a concrete choice for the

multiplication map m.

3. The Dirac operator

We now specify the multiplication map m. Let A be the CAR
algebra over E and let J be a complex structure in E. So J is an

orthogonal operator such that J2 = - 1. Let Hj, 03C0J, f2j be the Fock
space, representation, vacuum vector determined by J. It is known

that two Fock representations 77y, and 03C0J2 are unitarily equivalent if
and only if IJI - J21 is Hilbert-Schmidt [12]. In what follows we choose
and fix a Fock representation irj.

We take F to be Hj as a real Hilbert space, i.e. we restrict scalars
from C to R and take the inner product in F to be the real part of the
inner product in Hj. Norms of vectors are thereby unaffected. We
shall need the following properties of the Fock representation.

Since E C A, 03C0J determines by restriction a continuous linear map

Each unit vector in E is represented by a symmetry (self-adjoint
unitary) and
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DEFINITION 1: m(x,y) = 03C0J(x)y with x in E and y in F.
Now

Now xlllxll is a unit vector provided that x ~ 0 so we have

for all x in E and y in F. So m is certainly a continuous bilinear map
from E x F to F, and determines uniquely a continuous linear map ri
from E ~ F to F.
As in section 2, we denote by ai the natural map from E 0 F to

J(E; F).

DEFINITION 2: Let U be an open set in E, and let f be a

differentiable map from U to F such that f’(x) is nuclear for all x in
U. Then the Dirac operator P is given by

where 0 is the unique map from U to E Q9 F such that f’ = 03B11 03BF 0 1.
The CAR algebra H is sometimes called the C*-Clifford algebra,

the relations (3.1) are the Clifford relations and we shall call m the
Clifford multiplication. This terminology is compatible with that in
Hitchin’s article [10].

In this section, E and F are real separable infinite-dimensional
Hilbert spaces, hence there is a unitary map V from F onto E. Let
T ~ E Q9 F, and let T be the corresponding nuclear operator from E
to F. Then A = VT is a nuclear operator on E. Let B = (A* A)1/2. Then
there exists an orthonormal basis {en} such that

and £An  00. Now

hence the series Ye. 0 te. is absolutely summable in B 0 F. Let
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hence S = T by Lemma 1. Thus

Let f : U - F be a differentiable map such that f’(x) is nuclear for
all x in U, and let f’ = 03B11 03BF ~1. Let T = ~1(x) so that T = f’(x). Let

Then we have

Thus

Let cn = 7rj(e,,). Then we have

by the Clifford relations (3.1). Furthermore, ci is an analogue in

infinitely many dimensions of the original y-matrices of Dirac. In fact
the matrix of ci with respect to an orthonormal basis in F is an

infinite matrix which is symmetric and orthogonal. The vector fn(x) is
the n th partial derivative of f at x evaluated at en [3, p.34]. So we
have an expression for the Dirac operator in terms of the partial
derivatives and the c-matrices:

As in the finite-dimensional case, the c-matrices act on the space
of spinors [14].
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4. The Spinor Laplacian

Let ~n E = E~ ... ~ E ( n factors) and 0’ E = R. Let a 1 be the
natural map from E ~ F to f(E; F) and in general let an+1 be the
natural map from E G to Y(E; G) where G = (on E)~ F, n =

0,1,2,.....
Let U be an open set in E and let Do be the set of all maps from U

to F.

Let Dl be the set of all f such that f is differentiable and f’(x) is
nuclear for all x in U. By Lemma 1, there exists uniquely
~1 : U~E ~ F such that f’ = ai o ~1.
Let D2 be the set of all f in DI such that 01 is differentiable and

~’1(x) is nuclear for all x in U. By Lemma 1, there exists uniquely
~2 : U ~ E ~ E ~ F such that ~’1 = 03B12 03BF ~2.

In general let Dn+1 be the set of all f in Dn such that 0,, is

differentiable and 0’(xi is nuclear for all x in U. By Lemma 1, thére
exists uniquely ~n+1 : U~E ~ (~n E) ~ F such that ~’n = an+1 o ~n+1.
Thus Dn is a real vector space and Dn+l C Dn for each n ~ 0.
We recall that r1 is a continuous linear map from B (g) F to F. The

map rn is defined by

for all n ± 0. Thus rn reduces the rank of tensors from n + 1 to n.
Let

be defined by 03C1n(03BB) = rn o A. It is clear that

since each composite map is linear and continuous and sends the rank
n + 2 tensor xl 0 ... 0 xn+1 0 y to the continuous linear map

 rlCl, . &#x3E; x2 ~ ... 0 03C0J(xn+1)y.

THEOREM 1: If f E Dn then Pf E Dn-, and

PROOF: If f E Dn then there exist ~1, ... , ~n such that
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Let g = Pf. Then g = ri - ~1 by definition of P. Using the chain rule
and (4.1) we have

so that

Then

and

Hence g E Dn-1 by definition of D,-,. Furthermore we have

At the nth step of this iterative process we have, by the chain rule,
the definition of Dn, the (n - 1)-fold application of (4.1), and the
definition of P,

This ends the proof.
The real vector space Doc = ~ Dn is an invariant domain for P. The

formula
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gives the iterated Dirac operator in terms of the iterated Clifford
multiplication and ~n, which is essentially the n th Frechet derivative
f(n) of f. For

where Jn(E; F) is the Banach space of continuous multilinear maps
from E X ... x E to F. By the universal property of the projective
tensor product we have

Then ~n(x) is the unique tensor of rank n + 1 in (0n E)0 F cor-
responding to f(n)(x).
We now discuss the Laplacian 0394~ [6]. This operator fits well into

the framework of the present article. Let u be a map from U to R.
Then we have, identifying E with its dual E*,

Now the continuous bilinear functional from E x E to R which sends

XI,X2 to  x1,x2 &#x3E; determines uniquely a continuous linear functional
T on E ~ E such that T(JCi0JC2)=  x1,x2 &#x3E;. Let « be the natural

map from E Q9 E to 0(E; E). Then the trace of a(w) is by definition
T(w) for all w in E Q9 E.

DEFINITION 3: Let U be an open set in E and let u be a twice

differentiable map from U to R such that u "(x) is nuclear for all x in
U. Then the Laplacian àmu is given by

where v is the unique map from U to E Q9 E such that u" =. a 0 v.

DEFINITION 4: Let f E D2. The spinor Laplacian is defined by the
equation

Let f(x) = 03A3n  fn(x),yn &#x3E; yn be the Fourier expansion of f (x) in F
with respect to the orthonormal basis f y,, 1. Let un(x) =  fn(x),yn &#x3E; .

We claim that
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i.e. that the spinor Laplacian acts as the Laplacian on each Fourier
component of f(x). This claim will follow immediately from the

following

THEOREM 2: Let f E D2. Then

and

PROOF: Here, F* denotes the continuous dual of F. We claim that
the following equations are true:

We prove (4.5). Here (E(&#x26; E), denotes the subspace of E0B
consisting of symmetric rank 2 tensors. Now

Hence, by the Clifford relations (3.1), T01 and r1 03BF r2 agree on

tensors of the form x, ~ x2 0 y + X2 Q9 x, Q9 y. By linearity and con-
tinuity, they agree on (E 0 E), 0 F. The proofs of (4.2), (4.3), (4.4)
are similar.

Let u = y*03BFf. By the chain rule, the definition of D1, and (4.2) we
have
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By the chain rule, the definition of D2, and (4.3) we have

where a is the natural map E 0 E~(E; E). By definition of the
Laplacian, and (4.4) we have

Hence 0394~u = y*03BF0394~f by definition of the spinor Laplacian. By
Theorem 1 we have

But ~2 ~ (E 0 E), 0 F since f"(x) is a symmetric bilinear map from
E x E to F [3, p.59]. Applying (4.5) we get

EXAMPLE 1: Let T E (E 0 E), and let T be the corresponding
symmetric nuclear operator on E. Let y be a fixed vector in F and let
f(x) =  Tx,x &#x3E; y. The following equations are easy to verify suc-
cessively :
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With yi,..., yn vectors in F and Th..., Tn symmetric nuclear
operators on E and

we have similarly

5. The half-spin representations

Let A be the CAR algebra over E and let J be a complex structure
in E. Let 7ry, Hj, f2j be the Fock representation, space, vacuum vector
determined by J. Let F denote Hj as a real Hilbert space.

Let SO(E)1 be the special nuclear orthogonal group. Then SO(E)1
comprises all orthogonal operators T on E such that I - T is nuclear
and det(T) = 1. Also SO(E)1 is a Banach-Lie group and its universal
cover Spin(E)m is a subset of A+, the even CAR algebra. The spin
representation àj is by definition the restriction of 77y to Spin(E)~.
Now F splits into two invariant subspaces F+ and F-; the cor-
responding subrepresentations are denoted 0394+J and A-. So we have

The vectors in F, regarded as a Spin(E)m-module, are called spinors ;
those in F+ or F- are called 1/2-spinors. For more background
material, the reader may consult [9, 11, 12, 14, 15].
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Now .:;4+ is a simple C*-algebra [17] and leaves F+ invariant.

Therefore à i + is a faithful representation of the spin group Spin(E)~.
Since the elements of Spin(E)m are unitary elements of .:;4+, it is clear
that à’ is a faithful norm continuous unitary representation of

Spin(E)m; the same is true of àî. These two representations are also
irreducible [14].

Let Q+, Q- be the projections on F+, F-. Let f E Dl, f+(x) =
Q+f(x),f-(x) = Q-f(x). Then we have

For

It is clear that

By (5.1) we have

since we have rl : E Q9 F+~F-. Similarly, (Pf-)(x) ~ F+.

EXAMPLE 2: Let f(x) = x,x&#x3E;03A9J with t a symmetric nuclear

operator on E. Then, by Example 1, we have

Thus f (x ) E F+, Pf(x) e F- and P2f(x) E F+.
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