Total curvature and the topology of complete surfaces
Compositio Mathematica, Tome 41 (1980) no. 1, pp. 95-105.
@article{CM_1980__41_1_95_0,
     author = {Bangert, Victor},
     title = {Total curvature and the topology of complete surfaces},
     journal = {Compositio Mathematica},
     pages = {95--105},
     publisher = {Sijthoff et Noordhoff International Publishers},
     volume = {41},
     number = {1},
     year = {1980},
     mrnumber = {578052},
     zbl = {0403.53023},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1980__41_1_95_0/}
}
TY  - JOUR
AU  - Bangert, Victor
TI  - Total curvature and the topology of complete surfaces
JO  - Compositio Mathematica
PY  - 1980
SP  - 95
EP  - 105
VL  - 41
IS  - 1
PB  - Sijthoff et Noordhoff International Publishers
UR  - http://archive.numdam.org/item/CM_1980__41_1_95_0/
LA  - en
ID  - CM_1980__41_1_95_0
ER  - 
%0 Journal Article
%A Bangert, Victor
%T Total curvature and the topology of complete surfaces
%J Compositio Mathematica
%D 1980
%P 95-105
%V 41
%N 1
%I Sijthoff et Noordhoff International Publishers
%U http://archive.numdam.org/item/CM_1980__41_1_95_0/
%G en
%F CM_1980__41_1_95_0
Bangert, Victor. Total curvature and the topology of complete surfaces. Compositio Mathematica, Tome 41 (1980) no. 1, pp. 95-105. http://archive.numdam.org/item/CM_1980__41_1_95_0/

[1] D.D. Bleecker: The Gauss-Bonnet inequality and almost-geodesic loops. Advances in Math. 14 (1974) 183-193. | MR | Zbl

[2] S. Cohn-Vossen: Kürzeste Wege und Totalkrümmung auf Flächen. Compositio Math. 2 (1935) 69-133. | JFM | Numdam | Zbl

[3] M.W. Hirsch: Differential Topology. Springer-Verlag, New York-Heidelberg-Berlin 1976. | MR | Zbl

[4] A. Huber: On subharmonic functions and differential geometry in the large. Comment. Math. Helv. 32 (1957) 13-72. | MR | Zbl

[5] W. Klingenberg: Lectures on closed geodesics. Grundlehren der mathematischen Wissenschaften Bd. 230, Springer-Verlag, Berlin- Heidelberg-New York 1978. | MR | Zbl

[6] G. Thorbergsson: Closed geodesics on non-compact Riemannian manifolds. Math. Z. 159 (1978) 249-258. | MR | Zbl