@article{CM_1980__42_2_145_0, author = {Looijenga, Eduard and Peters, Chris}, title = {Torelli theorems for {K\"ahler} {K3} surfaces}, journal = {Compositio Mathematica}, pages = {145--186}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {42}, number = {2}, year = {1980}, mrnumber = {596874}, zbl = {0477.14006}, language = {en}, url = {http://archive.numdam.org/item/CM_1980__42_2_145_0/} }
TY - JOUR AU - Looijenga, Eduard AU - Peters, Chris TI - Torelli theorems for Kähler K3 surfaces JO - Compositio Mathematica PY - 1980 SP - 145 EP - 186 VL - 42 IS - 2 PB - Sijthoff et Noordhoff International Publishers UR - http://archive.numdam.org/item/CM_1980__42_2_145_0/ LA - en ID - CM_1980__42_2_145_0 ER -
Looijenga, Eduard; Peters, Chris. Torelli theorems for Kähler K3 surfaces. Compositio Mathematica, Volume 42 (1980) no. 2, pp. 145-186. http://archive.numdam.org/item/CM_1980__42_2_145_0/
[1] On Analytic Surfaces with Double Points, Proc. Roy. Soc. A 247 (1958) 237-244. | MR | Zbl
:[2] Conditions for the Analyticity of Certain Sets, Mich. Math. J. 11 (1964) 283-304. | MR | Zbl
:[3] Groupes et algèbres de Lie, Chap. IV, V, VI, Hermann, Paris 1968. | MR
:[4] On the Torelli Problems for Kählerian K-3 surfaces, Ann. Soc. de l'éc. N. Sup. 4e sér. 8 fase 2, 235-274 (1975). | Numdam | MR | Zbl
and :[5] La Géométrie der Groupes Classiques, Ergebnisse der Mathematik, Springer, Berlin (1955). | MR | Zbl
:[6] Über vierdimensionale Riemannsche Flächen mehrdeutiger analytischer Funktionen von zwei komplexen Veränderlicher, Math. Ann. 126, (1953) 1-22. | MR | Zbl
:[7] Topological methods in algebraic geometry (3 rd edition), Springer, Berlin -Heidelberg-New York (1966). | MR | Zbl
:[8] Surjectivity of the Period Map of K-3 surfaces of degree 2, Math. Ann., 228 (1977) 113-146. | MR | Zbl
:[9] Periods of integrals on algebraic manifolds III, Publ. Math. IHES 38 (1970) 125-180. | Numdam | MR | Zbl
:[10] On certain Kummer surfaces which can be realized as non-singular quartic surfaces in P3, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 no 3 (1976) 545-560. | MR | Zbl
:[11] On singular K-3 surfaces, in "Complex Analysis and Algebraic Geometry" A collection of Papers dedicated to K. Kodaira, Cambridge University Press (1977). | Zbl
and :[12] On the structure of compact complex analytic surfaces, I, Am. J. Math. 86 (1964) 751-798. | MR | Zbl
:[13] Existence of complex structure on a differentiable family of deformations of compact complex maniforlds, Ann. Math. 70 (1959) 145-166. | MR | Zbl
and :[14] On deformations of complex analytic structures III, Stability theorems for complex structures, Ann. Math 71 (1960) 43-76. | MR | Zbl
and :[15] On the locally complete families of complex analytic structures, Ann. Math. 75 (1962) 536-577. | MR | Zbl
:[16] Degenerations of K3 surfaces and Enriques surfaces, Izv. Akad. Nauk, Ser. Math., 41, no 5 (1977) 1008-1042. | MR | Zbl
:[17] Characteristic Classes, Ann of Math. Studies, 76, Princeton Univ. Press (1972). | Zbl
and :[18] Abelian Varieties, Oxford Univ. Press, Oxford (1970). | Zbl
:[19] On Kummer surfaces, Izv. Akad. Nauk SSSR, ser. Math., 39 (1975) 278-293. | MR | Zbl
:[20] A Torelli Theorem for algebraic surfaces of type K-3, Izv. Akad. Nauk, 35(1971) 530-572. | Zbl
and :[21] Cours d'Arithmétique, Presses Univ. de France, Paris (1970). | MR | Zbl
:[22] Surjectivity of the Period Map in the case of quartic surfaces and sextic double planes, Bull. A.M.S., 82 (1976) 716-718. | MR | Zbl
:[23] The period map of abelian surfaces, J. Fac. Univ. Tokyo, 25, no 1 (1978) 47-59. | MR | Zbl
:[24] Singular abelian surfaces and binary quadratic forms, in: Classification of algebraic varieties and compact complex manifolds, Springer Lecture Note in Math. 412, Springer Verlag, Berlin- Heidelberg-New York (1974). | MR | Zbl
and :[25] Projective models of K-3 surfaces, Am. J. Math. 96 (1974) 602-639. | MR | Zbl
:[26] Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3-surfaces. Preprint (1979). | Zbl
:[27] Discrete groups generated by reflections, Izv. 35 no 5 (1971) 1083-1119. | MR | Zbl
: