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Abstract

The existence is shown of subspaces of L which are isomorphic to
an L1(03BC)-space and are not complemented. A more precise local

statement is also given.

1. Introduction

The question we are dealing with is the following:

PROBLEM 1: Let g and v be measures and T : L1(03BC) ~ L1(03BD) an
isomorphic embedding. Does there always exist a projection of L1(03BD)
onto the range of T ?

and was raised in [1], [4], [5] and [21].
This problem has the following finite dimensional reformulation

(cfr. [4]).

PROBLEM 2: Does there exist for each À  00 some C  00 such that

given a finite dimensional subspace E of L1(03BD) satisfying
d(E, ~1(dim E)) ~ 03BB (d = Banach-Mazur distance), one can find a pro-
jection P : L1(03BD) ~ E with IIPII ~ C ?

In [4], L. Dor obtained a positive solution to problem 1 provided
IITIlIIT-111  V2. It was shown by L. Dor and T. Starbird (cfr. [5]) that
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any 11-subspace of L’(v) which is generated by a sequence of prob-
abilistically independent random variables is complemented. A slight
improvement of this result will be given in the remarks below, where
we show that problem 2 is affirmative under the additional hypothesis
that E is spanned by independent variables. Our main purpose is to
show that the general solution to the above questions is negative.
Examples of uncomplemented 1 P -subspaces of LP (1  p  ~) were
already discovered (see [24] for the cases 2  p  00 and 1  p  4/3
and [1] for 1  p  2).

2. The Example

We first introduce some notation. For each positive integer N,
denote GN the group {1, -1}N equipped with its Haar measure mN.
For 1 s n S N, the n th Rademacker function rn on GN is defined by

rn (x) = xn for all x ~ GN. To each subset S of {1, 2, ..., N} cor-

responds a Walsh function ws = 03A0n~S rn and L1(GN) is generated by
this system of Walsh functions.
For fixed 0 ~ ~ ~ 1, let IL = 0n ILn be the product measure on GN,

where 03BCn(1) = 1 + E and 03BCu(-1) = 1-~ 2 for all n = 1,..., N. This

measure IL is called sometimes the e-biased coin-tossing measure (cfr.
[30]).
Let now T~:L1(GN)~L1(GN) be the convolution operator cor-

responding to li. Thus (T~f)(x) = (f * 03BC(x) = ~GN f(x,Y)IL(dy) for all

f E L1(GN).
It is clear that Te is a positive operator of norm 1 and easily verified

that T~(wS) = elslws, where |S| denotes the cordinality of the set S.

Another way of introducing Te is by using Riesz-products.
Before describing the example, we give some lemma’s.

LEMMA 1: If f E L1(GN), then ~T~~~2 ~ f f dmN | + ~~f~2.

PROOF: Take f = a~ + 03A3S~~ asws the Walsh expansion of f. Then

The required inequality follows.



135

LEMMA 2: Let f1, ..., f d be functions in L’(GN) such that for each
i = 1,...,d

1. f fi dmN = 0.
2. fA, Ifil dmN ~ Sllfilli where Ai = [lfd ~ d~fi~1].

Then 

PROOF: For i = 1, ..., d, take Di = ON BAi and let Ci be the subset
of GN  ···  GN defined by Ci = B1  ···  Bi-1  Ai 
Bi+1 x ... x Bd. Remark that mN(Ai) ~ 1/d and hence mN(Bi) ~ 1 - 1/d.
Let rl, ..., rd be Rademacker functions on [0, 1]. By unconditionality,
we get

as required.
For each v E GN, define the function ev = 03A0Nn=1 (1 + vnrn ) on GN.

Thus (ev)vEGN generates L1(GN) and is isometrically equivalent to the
tl(2’)-basis.

LEMMA 3: For fixed 0 ~ E ~ 1 and K &#x3E; 0, the following holds

PROOF: It is easily verified that T~(e03BD)=03A0Nn=1 (1+~03BDnrn). If we let

r = 03A0Nn=1 (1 + ern), then by independency

and thus
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We use the symbol O to denote the direct sum in e’-sense. For fixed
N and d, take

Consider the maps

and for 0 ~ ~ ~ 1

defined by

where (x1, ..., xd ) E GN  ··· x GN is the product variable

Obviously ~03B1~ ~ 1, 11011 :5 2 and 11-y,11 ~ 2.
Let Ae : x - ~1(d) (D Y ~ X be the map a (D 13 EB 03B3~, clearly satisfying

~039B~~ ~ 5.

LEMMA 4: Under the above notations, IIAe(CP )11 ~ 1 24|~~1 f or each
cp E X, whenever 0  ~ ~ 1/4d.

PROOF: Assume cp = f 1 ~ ··· (D f d and take for each i = 1, ..., d

Ai = [|gi| ~ d~gi~1], B. = GNBAi, gi = gi~Ai and g"i = gi~XBi.
Let further 1= {i = 1,..., d; ~g’i~1 &#x3E; 1 4~gi~1} and J = {1, ..., d}BI.
Using Lemma 2, we find that
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110 (f ~ ··· ~ fd)~1 ~ ~GN ··· GN |03A3gi(xi)| dmN(x1) ... dmN(xd)

On the other hand, by Lemma 1

and hence for i ~ J

Consequently

Combination of these inequalities leads to

proving the lemma.

COROLLARY 5: Again under the above notations, denote RE the

range o f 039B~. Then d(RE, t1(d.2N»:5 do provided 0  ~ ~ 1/4d.

Our next aim is to show that RE is a badly complemented subspace
of ~1(d) ~ Y ~ X for a suitable choice of N, d and E.

LEMMA 6: Fix any positive integer d ~ 4, take N = d6d and let

E = 1/4d. Then ~P| ~ d/384 for any projection P from t1(d) (D Y(B X
onto R.

PROOF: Define for each v E GN

Since A, C U 1:J [Tej(av) &#x3E; 4], application of Lemma 3 gives that
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and hence, by the choice of N and E

as an easy computation shows.
It follows that if t/1v = 03BE03BD - 1, then

Assuming P a projection from ~1(d) ~ Y ~ X onto R~, one may
consider the operator Q = 039B-1~ from ~1(d)~ Y ~ X into X.
For each i = 1,..., d and v E GN, let ~i03BD be 03C803BD seen as element of

the ith component L1(GN) in the direct sum X. Thus 03B1(~i03BD) = 0,
03B2(~i03BD) = 03C803BD(xi) and 03B3(~i03BD) = ~i03BD - T~(~i03BD).
By well-known results concerning operators on L’-spaces, we get

Remark that, by symmetry, Lv |03C803BD| is a constant function. Because

1 4  ~03C803BD~1 ~2 and

we find using Lemma 4
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and hence

completing the proof.
From Corollary 5 and Lemma 6, it follows that

THEOREM 7: There exists a constant 0  C  00 such that whenever

T &#x3E; 0 and D is a positive integer which is large enough, one can find a
D-dimensional subspace E of LI satisfying d(E, ~1(D)) ~ C and IIPII ~
C-1(log log D)1-T whenever P is a projection from LI onto E.

This provides in particular a negative solution to Problem 1 and

Problem 2 stated in the Introduction.

3. Remarks and Questions

1. Following L. Dor, one may define local and uniform moduli for
functions and subspaces of an L1(03BC)-space.

For a function f in L1(03BC) and p &#x3E; 0, take

If now E is a subspace of L1(03BC) and p &#x3E; 0, let

and

Call a (E, p) a local modulus and (3 (E, p) a uniform modulus of the
space E.

Based on the ideas presented in the preceding section, the following
can be proved

LEMMA 8: There exist a sequence (En) of finite dimensional sub-
spaces of LI and constants C  00 and c &#x3E; c, such that

1. d(En, t1(dim En)) ~ C.
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2. limn~~ a (En, C) = o.
3. For each p &#x3E; 0, infn 03B2(En, p) &#x3E; 0.

As was pointed out by Dor [6], this leads to the existence of a

non-complemented t1-subspace of LI.

2. In fact, one may choose the spaces En of Lemma 8 in such a
way that they are well-complemented and probabilistically in-

dependent. This allows us to construct a non-complemented t’-direct
sum of uniformly complemented, independent, uniform e’-isomorphs.
Thus the next result concerning independent functions can not be
extended to independent tl-copies.

THEOREM 9: If E is an t1-subspace of L1(03BC) spanned by in-

dependent variables, then E is complemented in L1(03BC) by a projection
P whose norm JIP Il can be bounded in function o f d (E, e’(dim E)) (cfr.
[5]).

There is an easy reduction to the case where E is generated by a
sequence (fk) of normalized, independent and mean zero variables.
Using then the uniqueness up to equivalence of unconditional bases
in t1-spaces (see [14]), it turns out that this sequence (fk) is a "good"
~1-bases for E, or more precisely there is some constant M  00, M

only depending on d(E, ~1(dim E)), so that

whenever (ak) is a finite sequence of scalars.
Assume 6k (k = 1, 2,...) independent u-algebra’s such that fk is 6k-

measurable. The main ingredient of the next lemma is the result [4].

LEMMA 10: There exists a sequence (Ak) of li-measurable sets,
satisfying

1. Ak E 6k for each k,
2. fAk fk d03BC ~ p for each k,
3. 03A3k 03BC(Ak) ~ K,

where p &#x3E; 0 and K  ~ only depend on M and hence only on
d(E, t1(dim E)).

The proof of this lemma is contained in [5], Section 3. So we will
not give it here. Let us now pass to the
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PROOF oF THEOREM 9: We may clearly make the additional

assumption that bt (Ak)  1 3.

For each k, let fEk = G(J1, ..., Zk) the u-algebra generated by
..,
Take

Clearly Bk G 3Fk for each k. Remark also that

and hence

Define

Thus

Next, take P : L1(03BC) ~ E given by P(f) = 03A3k Uk’  0394k[f], Bk &#x3E; fk. It is
clear that P is a projection. We estimate its norm

3. Our example leaves the following questions unanswered

PROBLEM 3: What is the biggest À such that problem 1 has a

positive solution provided IITIlIIT-111 &#x3E; 03BB?

For E subspace of L’, define
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Take further for fixed n = l, 2, ... and À  o0

PROBLEM 4: Find estimations on the numbers 03B3(n, 03BB). At this

point, it does not seem even clear that for fixed À  00 the following
holds

Let us mention the following fact, which may be of some interest
for further investigations

PROPOSITION 10: Given  00, one can find constants c &#x3E; 0 and

C  00 such that if E is a finite dimensional subspace of LI satisfying
d(E, ~1(dim E):5 À, then E has a subspace F for which the following
holds:

1. d(F, t1(dim F»:5 À
2. dim F ~ c dim E

3. There exists a projection P : L1 ~ F with IIPII ~ C.

4

PROBLEM 5: Let G be an uncountable compact abelian group and
E a translation invariant subspace of L1(G), such that E is isomor-
phic to L1(G). Must E be complemented?

Related to this question is the following one, due to G. Pisier [19].

PROBLEM 6: Let G be the Cantor group and define E as the

subspace of L’(G) generated by the Walsh-functions ws where

ISI-2.
Obviously, E is uncomplemented. What about the following
a. Is E an L1-space?
b. Is E isomorphic to L1(G)?

It can be shown that E satisfies the Dunford-Pettis property (see
[13] for definition and related facts).
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5

Easy modifications of the construction given in the second section
also allow us to obtain badly complemented ~p(n)-subspaces of LP
for 1 p 2.
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