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Introduction

Our purpose is to give an elementary discussion of an appealing but
generally forgotten idea of Severi’s concerning the excess intersection
of divisors on a smooth variety.
Consider n fixed effective divisors H1,..., Hn on a nonsingular

projective variety X of dimension n, and assume that each Hi moves in a
base-point free linear system. Let (H1·...· Hn) denote their inter-
section class in the Chow group Ao(X) of zero-cycles on X modulo
rational equivalence. The degree of this class is the intersection number
of the hypersurfaces Hi. We pose the following

PROBLEM: Decompose the intersection number deg(H1 ·..... Hn)-
or better still, the class (Hi ...· Hn) E A0(X) - into a sum of local
contributions from the intersection ~Hi C X of the given divisors.

In the event that the Hi intersect transversely, or merely properly
(i.e. dim(~Hi) = 0), the solution to this problem is classical. If the

divisors meet improperly, however, the question becomes more in-
teresting. Fulton and MacPherson have recently found a formula for
a refined intersection class which provides a decomposition of the
desired type [3, p. 11]. But as they emphasize, it is important from a
foundational point of view to understand an excess intersection as a
limit of proper intersections, and their construction lacked such a
"dynamic" interpretation. In most other contemporary treatments,
improper intersection appears simply as a pathological phenomenon.
By contrast, Severi - whose approach to intersection theory centered
around continuity arguments - was led quite naturally to deal with
excess intersection. And in a brief remark [7, p. 258], Severi sug-
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gested a beautiful solution to the stated problem, at least for divisors
on Pn.

We may summarize Severi’s proposed decomposition of the inter-
section number. Working on CPn, he lets the n given hypersurfaces
move in families Xi = {(Hi)t}t~S parametrized by a smooth analytic
curve S, with (Hi)t0 = Hi. Severi assumes that the divisors (Pti)i inter-
sect transversely for t ~ to. Thus for t ~ to, the intersection (Xi), n
... ·~ (Hn)t consists of II deg(Hi) points, which converge as t ~ t0 to a
zero-cycle on n Hi C Pn. Note that if the fixed hypersurfaces meet
improperly, then this limiting cycle will depend on the families Yi.

Severi’s procedure, in effect, is to attach a "multiplicity" i(Z) to
each irreducible subvariety Z ~ ~ Hi by considering all such defor-

mations. Specifically, i (Z) is defined inductively on dim(Z). For a
point P~~Hi, let i(P) be the minimum, over all families Xi as

above, of the number of intersection points (H1)t n ... ~ (Hn)t con-
verging to P as t - tu. Evidently i (P ) = 0 for all but a finite number of
points P. Consider next an irreducible curve C C ~Hi. Define j(C) to
be the minimum over all families of the number of points of (H1)t n
···~ (Hn)t converging in the limit to some point on C, and set

i(C) = j(C) -- 03A3P~C i(P). Thus i(C) counts the number of intersection
points always approaching the curve C but not any particular point on
C. Similarly, for an irreducible surface F C n Hi, j(F) is the minimum
number of intersection points converging to F, and i(F) =
j(F) - LZCF i(Z). Severi’s assertion was that continuing in this man-

ner, one obtains for every irreducible Z C n Hi a well-defined integer
t(Z)~0, and that these furnish a decomposition of the Bezout

number:

Unfortunately, Severi’s claim is not true. A simple counterexample
is given by the plane curves

The point to observe is that i([O, 0, 1]) = 0. In fact, consider the
rational families defined in P2 A’ by

the curves (¡¡el)t and (W2), intersect transversely for almost all t E

A’ - 101, and none of the intersection points converge to [0,0,1] as
t - 0. It follows by symmetry considerations that 1 i(Z) is even, and
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(*) cannot hold. (Compare [3, p. 10], and §3 below.) As the referee

points out, one can vary this example to obtain one in which the Hi
are reduced and irreducible by starting with the four hypersurfaces

n
The object of this paper is to show how Severi’s procedure can be

modified so that it does yield a decomposition of the intersection class
of the given divisors Hi C X. The approach we take, which is to focus
on deformations generic to first order, can be described roughly as
follows. Consider one-parameter rational algebraic families 2t; =
{(Hi)t}t~S satisfying the same conditions as before. Under a mild

hypothesis, the Xi determine a point in a projective space P

parametrizing first order approximations to such deformations. We
prove a theorem to the effect that for any subvariety Z C n Hi, there
exists a Zariski open dense set Uz C P with the following property:

Suppose that 2t; are families with first order terms corresponding to a
point in Uz. Then the intersection points (H1)t~···~(Hn)t ap-

proaching Z as t ~ t0 converge to zero-cycle on Z whose rational
equivalence class a(Z) E Ao(Z) depends only on Z, and not on the
families Hi.

Using these classes a (Z) in place of the numbers j(Z), one can
mimic Severi’s inductive definition and attach to each irreducible

Z ç n Hi a rational equivalence class u(Z) E Ao(Z). The degree of
u(Z) counts the number of intersection points typically approaching
Z, but not any fixed subvariety of Z. Letting cpz,x denote the inclusion
Z 4 X, it is easy to check that

in Ao(X), and so we arrive at a solution in the spirit of Severi to the
problem posed above. (In fact, although we shall not pursue the

matter here, it turns out that the classes O"(Z) coincide with those
obtained by Fulton and MacPherson using a variant of the con-
struction in [3, p. 11]. Thus one has a new interpretation of their
refined intersection class.)
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This paper is divided into three parts. § 1 is devoted to preliminary
definitions, and to the proof of a crucial lemma. The decomposition of
the intersection class is given in §2. Finally, in §3 we turn by way of
example to the case of two curves on a surface: here, a formula of B.
Segre allows one to make explicit computations.
We wish to thank A. Landman and R. MacPherson for valuable

help. We have also benefited from comments by the referee on an
earlier version of this paper. Above all we are indebted to W. Fulton,
who suggested the topic and gave advice at every stage. 
Concerning notation and conventions: all schemes are assumed

separated and of finite type over an algebraically close field k, and
unless otherwise indicated we work exclusively with closed points.
L.(X) = ~Ld(X) denotes the group of cycles on a scheme X, graded
by dimension. A closed subscheme Y C X determines a cycle [Y] E
L.(X), in which each irreducible component of Y appears with

coefficient the length of the local ring of Y at the component’s generic
point. An algebraic family of d-cycles on X parametrized by a
non-singular curve S is a (d + 1 )-cycle a = 03A3 ni[Vi] on X x S such
that each of the varieties Vi dominates S. The fibre at E Ld(X) of a
over t E S is defined as 03A3ni[(Vi)t], where (Vi)t is the scheme-

theoretic fibre of Vi over t, considered as a subscheme of X =

X {t}. We use Fulton’s theory [1] of rational equivalence on pos-
sibly singular varieties.

§ 1. Preliminaries; main lemma

Let X be a non-singular projective variety of dimension n. Fix once
and for all n effective divisors

and assume that each Hi moves in a base-point free linear system.
One reduces the question of intersecting the Hi to an intersection
involving only two schemes by forming the fibre square

n

So we actually consider the intersection of x Hi with the diagonal in
;=1
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n

X X. In the sequel, we denote the n-fold product X by Y. Note that
i=1 

if the Hi meet properly, then the intersection cycle H1 · ...·Hn is just
the cycle [~Hi]~L0(X).
The study of certain global and infinitesimal deformations of x Hi in

Y plays a central role in all that follows. While it is easy enough to
describe intrinsically the deformations in question, it is simpler to
deal directly - as Severi did - with spaces of divisors on X. Our

discussion will be phrased, then, in these classical terms. We begin by
introducing some notation.

Let Mi be the projective space IHil of divisors on X linearly
equivalent to Hi, and set

We denote by mo E M the point corresponding to the product of the
given divisors Hi. Let Fi C X x Mi be the universal family of divisors
over Mi, and put F = FI x ... x Fn C Y x M. Since each H; moves in a

base-point free linear system, the projection F - Y is smooth. Let

I C X x M be the intersection of the Fi:

X x M being embedded in Y x M via 03B4 x 1. If m E M corresponds to
divisors H!,..., H’n, then the fibre Im C X of lover m is isomorphic
to the subscheme n Hi C X. Using the isomorphism I = F YX, one
sees that I is a non-singular irreducible variety, with dim 1 = dim M.
We shall be concerned with the one-parameter déformations of

 H, in Y -  X) determined by maps

where S is a non-singular curve, and to is a fixed point on S. Such a
mapping gives rise to n families Xi = {(Hi)t}t~S of linearly equivalent
divisors on X, with (Hi)t0 = Hi. Assuming that the divisors (Xi)t
intersect properly for t ~ to, the limiting cycle

’ I.e. f : S - M is a morphism, and f (to) = mo.
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is defined as follows. Consider the subscheme J = I MS~X S:

The cycle [J] E lo(X x S) restricts over SO = S - {t0} to an algebraic
family I-L 0 E II(X x So) of zero-cycles on X parametrized by S°. Since
J is flat over S°, it follows from Lemma A in the appendix that for
t ~ to,

S being a curve, 03BC0 has a unique extension to a family it E L1(X x S)
of zero-cycles parametrized by S: li is obtained by taking the

closures in X x S of the components of 03BC0. We set

03BBf is a zero cycle on ~Hl C X which represents the intersection class
(H1·...· Hn) in A0(X).

We henceforth restrict our attention to families f : (S, to) ~ (M, mo)
satisfying: (i) the divisors (Hi)t intersect properly for t ~ to, and (ii) the
differential df : Tt0S ~ Tm0M is non-zero. Denote by U the class of all
such, so that an element f~U consists of a mapping f : (S, t0) ~
(M, mo) for some smooth curve S and to E S. Each f ~ U determines a
limiting cycle 03BBf E £lo( n Hi). Moreover by virtue of condition (ii), the
map on tangent spaces gives rise in the natural manner to a function

One verifies that this function is surjective. Although we do not
attempt to put any geometric structure on the class 91, we consider
the projective space P = P(Tm0M) as an algebraic variety. One thinks
of the points of P as representing the various first order ap-

proximations to families f E 9t.
The following lemma is the basic fact that allows us to carry out

Severi’s idea. It asserts that for déformations f E 9t generic to first
order, the limiting cycle Af depends only on first order data.
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LEMMA 1.1: There exists an open dense set V C [P(Tm0M) such that
for all families f E i-1(V), the limiting cycle Àt E £lo(nHi) depends
only on i(f). In fact, there exists a pure dimensional subscheme

T C X x V, flat and finite over V, such that

for every v E V and f ~U with i(f) = v.

REMARK: One must generally be content with a proper open subset
V C P(T,M). Consider for instance the example given in the Intro-
duction. Define Hi, H2, XI as before, and let

X2(C) = V((x0 - t2x1)(x1 + c3tXO)(XI - c3txo)) C P2 X AB

For any c E k, the families XI and X2(c) determine an element of %
whose image in P(T,M) is independent of c. But the corresponding
limiting cycles do vary with c.

PROOF oF LEMMA 1.1: We use the notation introduced above. We

may assume that the projection g : I - M is surjective; for if it is not
then 03BBf = 0 for every f ~U, in which case the Lemma is trivial. Let
03C0:  ~ M and ir’: Î - I denote respectively the blowings up of M at
mo, and of I along the fibre Im0. There is an induced map g :  ~ M
which gives rise to a commutative diagram

Note that i C X x M, and that g is projection to the second factor.
We identify the exceptional divisor of 03C0 with P(Tm0M).
We claim that there exists an open set U C M, with codim(M -

U, ) ~ 2, such that res g : -1(U) ~ U is flat and finite. Indeed, M is
non-singular, i is integral since I is, and the surjectivity of g implies
that g is likewise surjective. So the assertion follows from the fact
that any proper surjective morphism f:Z~W between irreducible
varieties of the same dimension, with W non-singular in codimension
one, is flat and finite over the complement of a closed set of codi-
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mension at least two. Observe that g is flat and finite over the

complement of B = {m ~ M |dim(g-1(m)) ~ 1}; thus we may assume
that 7T-I(M - B) C U. Put

V is non-empty since codim(M - U, M) ~ 2.
Consider an element f : (S, t0)~(M, mo) in the class 21, so that

f (t) 0 B for t ~ to. Bearing in mind that S is a non-singular curve, one
sees that f has a unique lifting to a morphism :S~, and that
moreover 1(to) EE 03C0-1(m0)= P(Tm0M) is the point corresponding to the
line df(Tt0) ~ Tm0M. Thus we may identify i(f) with 1(to). Now sup-
pose that i(f)=(t0)~ V. Then lim  ~ U. Hence if one defines J C
X   to be the fibre product Í x M S, then J is flat over S, and it

follows from the definition that xf = []t0 E 20(n Hi). By Lemma A of
the Appendix, we have []t0 = [t0]. But t0 = 11(to), which depends only
on 1(to), i.e. on i(f ). This establishes the first assertion of the lemma.
Taking T = xù V gives the desired finite flat family over V.

Q.E.D.

§2. Décomposition of the intersection class

We now show how Severi’s idea, suitably modified, yields a

decomposition of the intersection class (Hl,...’ Hn) E Ao(X) into
local contributions from the physical intersection of the divisors

Hi C X. Our result takes the form of two theorems. Theorem 2.1

asserts that for deformations generic to first order, the rational

equivalence class of the part of the limiting cycle lying on a given
closed set W C X is independent of the deformation. (The genericity
condition is expressed in terms of the function i : U ~ P(Tm0M) defined
in § 1.) Theorem 2.2 states that the class on W so obtained arises as a
sum of contributions from certain subvarieties of n Hi.

It is convenient to introduce the following notation. Given a

scheme S and a subscheme T of S, ~T,S denotes inclusion T S. If
a = LQES nQ[Q] is a zero-cycle on S, pT (a ) is the part of a lying on T:

THEOREM 2.1: Let W c X be a fixed closed set. Then there exists a
dense open set Uw ~P(Tm0M) such that for all families f E
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i-1(Uw) Ç 2t, the cycles

lie in a single rational equivalence class 03B1(W) E A0(W).

THEOREM 2.2: There exist irreducible subvarieties

plus classes 03C3(Zj) E Ao(Zj), such that for every closed set W C X the
class 03B1(W) is given by the formula

in Ao(W).

By setting 03C3(Z) = 0 if Z is not one of the subvarieties occurring in
Theorem 2.2, we assign a class 03C3(Z) E Ao(Z) to every irreducible
Z~~Hi.

COROLLARY 2.3: One has

in Ao(X).

PROOF: Apply Theorem 2.2 with W = X, recalling that for any
f G 91 the limiting cycle Àf represents the class (Hi ’... ’ Hn) in

Ao(X).
Q.E.D.

Note that one may obtain corresponding results for the intersection
number by taking degrees in Theorems 2.1 and 2.2.

REMARK: The analogy with Severi’s inductive approach is brought
into relief by writing (*) in the form
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In particular, this shows that the classes u(Z) are uniquely deter-
mined by the formula (*).

REMARK: If the Hi intersect properly, then Theorems 2.1 and 2.2
reduce to the classical décomposition of the intersection class. In
fact, suppose that Q E n Hi is an isolated point at which the Hi have
intersection multiplicity mQ. It results from the definition of the

limiting cycle that in this case pQ(Àf) = mQ[QJ for every f ~U. Hence
03C3(Q) = mQ[Q] E Ao(Q).

Theorems 2.1 and 2.2 will be proved simultaneously. The idea is to
interpret the assertions in terms of the spaces V C P(Tm0M) and
T C X x V constructed in Lemma 1.1; the argument is illustrated in

Figure 1. In the course of the proof it becomes necessary to consider
certain intersection cycles on a possibly singular ambient space. For
the reader’s convenience, we review from [2, §§1, 3], [3, §5] and [8,
§4] the rudimentary facts which we shall need in this connection.
Let X be an irreducible variety, i : Y 4 X a local complete inter-

section of codimension d, and X’ C X a subscheme of pure dimension

Fig. 1. V C P(Tm0M) and T C X x V are as in Lemma l.l: For any f E 91 with

i(f) = v E V, Af = [Tv]. Tt,..., Tr are the irreducible cornponents of T. Given a closed
set W c ~ Hi, for generic v E V only the components of T lying over W contribute to
the part of the cycle [Tv] supported on W. If Tj is such a component, then its
contribution is localized to the subvariety Zj = pri(Ti) Ç W.
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n. If Y’ = X’ n Y has dimension n - d, then the intersection cycle

is defined. It may be computed as in Serre [6], as the alternating sum
of the cycles of the sheaves Torix(~X’, Cy); the condition on Y 4 X
ensures that the Tori vanish for i &#x3E; d. If [X] = 1 rn;[X;], where the
X’j are the irreducible components of X’, then i*[X’] = 03A3 mji*[X’j]. If
j:ZY is a local complete intersection of codimension e, and if

Z’ = Y’ ~ Z has dimension n - (d + e), then

in Ln-(d+e)(Z’). This last fact, plus the characterization [1, Prop. 2.1] of
rational equivalence, easily yields the following

LEMMA 2.4: Let V be a smooth variety of dimension n, and let v,

v’ E V be points which can be joined by a non-singular rational curve
C C V. Consider a variety Z, and a subscheme T C Z x V of dimen-
sion rn such that dim T rl (Z x {03C5}) = dim T n (Z x (03C5’}) = m - n. Then
the two cycles [T]·[Z {03C5}] and [T]·[Z {03C5’}], considered in the

natural way as (rn - n)-cycles on Z, are rationally equivalent.
(Observe that Z x {03C5} and Z x {03C5’} are local complete intersections in
Z x V).

PROOFS oF THEOREMS 2.1 AND 2.2: Let V C P(Tm0M) and T C X x
V be the sets constructed in Lemma 1.1. Let Ti,..., Tr be the

irreducible components of T (with reduced structures), and set

Thus each Zj is an irreducible subvariety of the intersection n Hi, and
Tj C Zj x V. For v E V, we will write (Tj)03C5 E L0(Zj x f v 1) = ito(Zj) for
the intersection cycle [Tj]· [Zj {03C5}] in Zj x V. One has ~Zj,X*Tj&#x3E;03C5 =
[Tj] · [Zj {03C5}] in L0(X), the intersection on the right being taken in
X x V. Denote by mj the coefficient of [Tj] J in [T], so that [T] =

1 mj[Tj]. Observe finally that the flatness of T over V implies that
[T]· [X x f v 1] = [T03C5], where as usual T03C5 is the scheme theoretic fibre
of T over v E V.

Now fix a closed set W C X. Then for any v E V one has
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in L0(X). There exists a dense open set Uw C V such that when
v E Uw the cycles in the second sum on the right have support
disjoint from W. For v E Uw, then,

in L0(W). But Uw is an open subset of a projective space, so by
Lemma 2.4 the cycles Tj&#x3E;03C5 E L0(Zj) lie in a single rational equivalence
class Tj E AO(ZJ) independent of v E Uw. Theorem 2.1 then follows
from (*), and taking u(Zj) = m;T; E Ao(Zj) yields Theorem 2.2.

Q.E.D.

REMARK: This decomposition is closely related to work of Fulton
and MacPherson [2, 3], who have shown how to localize intersection
classes on a non-singular variety. In the present situation, their

construction yields a "refined" class

which maps to the usual intersection class of the Hi under the

homomorphism ~A0(Z)~A0(X) induced by inclusions. (The class
studied in [2], which is better understood (cf. [3, §6]), is the image of
{H1·...· Hn} in Ao(f1 H;).) To construct this refined class, let N be
the normal bundle to Hi in x X, and C the normal cone to n Hi in X.

Denoting by jr : ~N (resp. 03C0’: ~ C) the projective completion of
N (resp. C), one has the commutative diagram

Let ëj be the irreducible components of C (with reduced structures),
let pj = ëj 4 N denote the inclusion, and let 7T j = v’ 1 ëj. Write n; for
the coefficients of [j] in [C]. Finally, let e = 7r*(NQ I)ICN- (- 1) be the
universal quotient bundle of rank n on . Then the component of
{H1·...· Hn} in Ao(Z) is defined to be:
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(We refer to [2, 3] for details, motivation, and alternative descrip-
tions.) Then one has the following

The proof will appear elsewhere. It involves intersecting sections of
the normal bundle with the normal cone.

§3. The case of two curves on a surface

To illustrate the preceeding sections, we indicate how one may
compute the classes o--(Z) in examples involving two curves on a
smooth surface X.

Start with effective divisors

on X, where Dl and D2 meet properly. We choose sections Pi E
F(X, ~X(Di)) and Q E T(X, ~X(E)) such that

(If s is a section of a line bundle, (s ) denotes its divisor of zeroes.)
Consider families Xi C X x A’ defined by sections of the pull-back of
~X(Hi) to X x A1:

where Si, S’i, ... are sections of ~X(Hi). Observe that if mo E M =

IHII x JH21 is the point corresponding to HlxH2, and if f:(A1,0)~
(M, mo) is the mapping determined by the families {(Hi)t}t~A1, then

We assume henceforth that the curves (H1)t and (’Je2)t intersect
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properly for almost all t~0; deformations satisfying this condition
exist in profusion provided that the ~X(Hi) are generated by their
global sections.

In order to make concrete calculations, one needs an efficient
method for determining the limiting cycles of all such families whose
first order terms lie in some dense open subset of P(T,M). This is

provided by a formula due classica.lly to B. Segre [5, §14]:

PROPOSITION 3.1: Assume that the curves (Pl S2 - P2S,) and (Q)
intersect properly. Then the limiting cycle À = lim (H1)t· (H2)t is given
by

EXAMPLE: Consider again the curves

on P2. Segre’s formula shows that for generic SI, S2 E 0393(P2, C(3» the
corresponding limiting cycle contains [0, 0, 1] with multiplicity three.
Hence 03C3([0, 0, 1]) = 3 . [0, 0, 1]. One sees similarly that for any other
point P E n H;, o-(P) = 0. It follows that

which determines the classes 03C3(V(~0)) and O"(V(XI»’

LEMMA 3.2: Notation being as in § 1, let Z C X x S be a closed

subscheme, flat over SO = S - f tol, such that

for t~ to. Assume that dim Zto = 0, and suppose finally that deg[Zt0] =
deg(Ht ..... Hn). Then

PROOF: It is enough to show that the projection p : Z - S is flat.

For then Z is pure one-dimensional, in which case (*) implies that
À == [Z],,,. Moreover, Lemma A from the appendix applies to give
[Z],,, = [Zt0]. Now it follows from (*) and the fact that dim Zto = 0 that
p is quasi-finite; being proper, it is finite. Finally, the last hypothesis
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together with (*) shows that the function t~dimk(p*~Z~k(t)) =
deg[Xt] is constant, which implies the flatness of p, as desired.

Q.E.D.

PROOF OF PROPOSITION 3.1: For simplicity of notation, we will
assume that (XI), and (H2)t intersect properly for all t E A1-{0}. Let
Z = àti rl H2 ~03A6 C X x Al, where 03A6 C X x A’ is the divisor

Z evidently satisfies all but the last hypothesis of Lemma 3.2. The
Proposition will follow if we show that [Zo] is given by the formula
claimed for À, since the latter has the correct degree.
To this end, let A be the local ring of X at a closed point, and let ~

[resp. pl, p2, q] be a local equation for P1S2 - P2SI [resp. Pl, P2, Q]. It
suffices to prove

But consider the exact sequence of A-modules:

Noting that TorA1(A/~, A/q) = 0, (*) follows upon tensoring by A/~.
Q.E.D.

Appendix

For lack of a suitable reference, we outline a proof of the following
useful

LEMMA A: Let S be a non-singular curve, X a pure one-dimen-
sional scheme, and X~ S a fiat morphism. Then for t E S, one has

PROOF: Given x E XI, let A = 6xT, and let u E 0,S be a uniformiz-
ing parameter. By flatness, u is a non zero-divisor in A. The equality
at x of the two cycles in question is equivalent to
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(*) length(A/uA) = 03A3 length(A,,) - length(A/ji + (u)),

where {ji} are the minimal prime ideals of A. But (*) follows from [4,
IV. 21. 10. 17.7].
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