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THE DOUBLE BAR AND COBAR CONSTRUCTIONS

H. J. Baues

For the homology of a connected loop space 2|X|, Adams and
Eilenberg-Moore found natural isomorphisms

H,(QC.X)= H*(lel),
H*BC*X) = H*(Q|X)).

CyX and C*X are the normalized chains and cochains of the
simplicial set X respectively. The functor 2 is the cobar and B is the
bar construction. We describe in this paper explicit mappings

A:QCX—NCXRQNCX
p:BC*X@BC*X — BC*X
which induce the diagonal on H 4(|X]|) and the cup product on
H*(2|X|). A is a homomorphism of algebras and an associative
diagonal for 2C,, p is a homomorphism of coalgebras and an
associative multiplication for BC*. To construct such mappings is an
old problem brought up for example in [1], [6] or [13]. By use of 4
and g we can form the double constructions, which yield natural
isomorphisms
H(2QCX)= H*(-Q-leb
H*(BBC*X)= H*QQ|X))
for a connected double loop space. However there is no appropriate
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diagonal on 20C,X and therefore further iteration is not possible.
This answers the first of the two points made by Adams in the
introduction of [1].

The diagonal on 2C4X is also of special interest since it permits us
to calculate the primitive elements in H .(2|X|) over the integers.
Over the rationals we thus can combine Adams’ isomorphism and the
Milnor-Moore theorem [10] to derive a combinatorial formula for the
rational homotopy groups m4(|X|)® Q. This is totally different from
Quillen’s and Sullivan’s approach [4] and seems to be the easiest. For
a finite simplicial set X the formula is of finite type and thus available
for computations with computers. Such a finite combinatorial des-
cription is a classical aim of algebraic topology. The geometric
background of the algebraic constructions here is discussed in [3].

§0. The algebraic bar and cobar constructions

We shall use the following notions of algebra and coalgebra. Let R
be a fixed principal ideal domain of coeflicients. A coalgebra C is a
differential graded R-module C with an associative diagonal A:C —
C® C, a counit 1: C > R and a coaugmentation n:R — C. An algebra
A is a differential graded R-module A with an associative multi-
plication w:A® A—> A a unit 1: R—> A and an augmentation €: A —
R, see [7]. All differentials have degree —1. An R-module V is
positive if V, =0 for n <0 and negative if V,=0 for n>0. V is
connected if Vo, =0. For a connected V, which is positive or negative,

0.1) T(V)=@ ve®"

n=0

has a canonical multiplication p and a canonical diagonal A with

I-"(al®°"®ar9ar+l®'"®an)=al®"'®an
A(a.®---®an)=g(a1®---®a,)®(am®-~®an).

(0.2) Let C be a coalgebra, which is positive and connected, and let
A~:C~'—>C‘®C~‘ be its reduced diagonal, C = C/C,. The cobar con-
struction C is the free algebra (T(s7'C), da) with the differential d,
determined by the restriction

doi' = —i'(s7'ds) + i%(s ' ® s HAs
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where i": V®" 5 T(V) is the inclusion. s denotes the suspension of
graded modules, (sV), = V,_;, and a switch with s involves an ap-
propriate sign.

(0.3) Let A be an algebra, which is positive, or negative and con-
nected, and let & : A® A — A be the restriction of its multiplication p
to the augmentational ideal A = ker €. The (normalized) bar construction
BA is the free coalgebra (T(sA), dg) with the differential dgp deter-
mined by its component

p'dg =—(sds )p' +sa(s”' ®@s )p?

where p" : T(V)— V®" is the projection. see [12].

§1. A diagonal for the cobar construction

In this section coalgebras and algebras are positive and coalgebras
are also connected. Let A* be the simplicial category with objects
A(n)={0,..., n}. For a simplicial set X : A* > Ens write

a(ao, . .., an) =i%(co) for o0 € X, = X(A(n))

where i, : A(m)— A(n) is the injective monotone function with image
a={ay<-:--<ap}. If Xy=*is a point, the normalised chain complex
C.X is a coalgebra by virtue of the Alexander-Whitney diagonal

n

A(@)=2 d(0,...,)RQa(,...,n).

i=

A degenerate o represents the zero element in CX. C,X is also the
cellular chain complex of the realisation |X| which is a CW-complex.
Now we assume that |X| has trivial 1-skeleton *. Adams’ result in [1]
is a natural isomorphism

(1.2) ¢*3H*(QC*X)EH*('Q|X|)

of Pontryagin -algebras. 2C,X is the cobar construction on the
coalgebra (C4X, A). In fact it can be regarded as the computation of
the Adams-Hilton construction [2] for the CW-complex |X|. The
algebra 2C.X is the tensor algebra T(s'C4+X) on the desuspension
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of C(X) = Cx(X)/C«(*). We introduce a diagonal
(1.3) A:0CX— QC X QNCX

as follows. For a subset b ={b;<---<bJof n—1={1,...,n—1} let
€., be the shuffle sign of the partition (a, b) with a=n—1—-b. We
use the notation

o ... lo]1=5"0,® - ®s "oy, € T(s'CxX)

where o; € X,, and where i,,...,ix are exactly those indices i €
{1,...,r} with n, > 1. Now for o € X, we define

Alo]= > €wnla (0, ..., b)a(by,....,b)|...lob,...,n)]IQ[a(0,b,n)]

bCn-1

where o(0, b, n)=0(0, by, b,,..., b, n). The sum is taken over all
subsets b ={by,...,b,}, r=0, of n— 1. Thus the indices b =# and
b=n-1 yield the summands [6]® 1 or 1) [o] respectively. The
formula determines A on all generators of the algebra 2C,X. Extend A
as an algebra homomorphism. (We make use of the convention that the
tensor product A A’ of algebras is an algebra by means of the
multiplication (L@ w)1aQ@ TR 14) where T is the switching
homomorphism with T(x® y) = (- D*Ply® x). One can check that A
provides 2C,X with a coalgebra structure. 4 is in fact a geometric
diagonal, that is compare [3]:

(1.4) Tueorem: Using Adams’ isomorphism (1.2) the diagram

H(QC:X)—=5 H(QC4X @ 2C4X)

sl¢* zlw@m

H*(-Q'Xl) T H*(Q|Xl X QIXI)
commutes. D is the diagonal for the loop space Q|X|, that is D(y) =
>, y)-
By the Milnor-Moore theorem [10] we now obtain a purely algebraic
description of the rational homotopy groups of a simplicial set X with

trivial 1-skeleton |X|' = *.

(1.5) CoroLLARY: The Hurewicz map determines a natural
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isomorphism
m(2IXNRQ = P(HLAL2C:X)® Q, A4)

of graded Lie algebras.

P denotes the primitive elements with respect to A, that is the kernel
of the reduced diagonal A*:I:I —-»H®H with H = ﬁ*(QC*X)®Q.

If X is a finite simplicial set 2 C X is finite dimensional in each degree
and thus A, can be effectively calculated, see the examples below. A
further advantage of (1.5) over Sullivan’s approach [4], (which makes
use of the rational simplicial de Rham algebra and is not of finite type), is
that (1.4) allows us to compare the primitive elements over Z with
rational homotopy groups. Moreover applying the cobar construction
on (2C4X, A) we obtain

(1.6) THEOREM: If |X| has trivial 2-skeleton, there is a natural
isomorphism of algebras

H (20C.X) = H.(00|X]).

We remark here that the method cannot be extended to iterated loop
spaces Q'|X| for r>2, since it is impossible to construct a ‘nice’
diagonal on 202 C X, compare [3].

(1.7) ExampLE: Let X be a simplicial complex and let Y C X be a
subcomplex containing the 1-skeleton of X. The quotient space X/Y
is the realization of a simplicial set and (1.5) yields a formula for the
rational homotopy groups 74+(X/Y)® Q. By (1.6) we have a formula
for H(2(X/Y)). An especially easy example is the computation for a
wedge of spheres

W = v A" [0A" n; =2.
In this case the cobar construction QC,W = T(s'H«W) has trivi-

al differential and the diagonal A in (1.3) has primitive values on
generators s 'x, x € H, W, that is

Asx=1QG X))+ 'X)R 1.
Thus we obtain from (1.5) a well known theorem of Hilton:

The rational homotopy group 7 +(2W)® Q of a wedge of spheres W is
the free Lie algebra generated by s 'H (W) Q.
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Furthermore we obtain from (1.6) an isomorphism of Milgram in [9]

H.(QQW) = H(Q(T(s 'H.W), 4)).

(1.8) ExampLE: Let Py be the real projective N-space. The trun-
cated spaces

PR,N=PN/PRfl=e()U€R UeRHU ...UeN

are CW-complexes with exactly one cell e" in each dimension R =
n =< N. We obtain P. as the realization of the geometric bar con-
struction B(Z;) which is a simplicial set. Py is its N-dimen-
sional skeleton and the cell e" is given by the single non degenerate
element x, =(1,...,1)€(Zy)". Thus C,Pry is a free chain complex
generated by xo = 1 and xg, . . ., x5y with degree |x,| = n. The boundary is

}M:

dx, =

(—=D'd¥x, = (1+(=1)")x,-1,n >R,
i=0

since d*x, = pi(x,) is degenerate for 0 <i <n. By use of (1.1) the
diagonal on C4Pry is

N-R
A) = 1@ X, + X, @ 1+ 2, X R Xa
i=R
Let y, = s 'x, be the desuspension of the element x, and let

TR,N = T(yRa e ey yN)7 R = 2’

be the free ring generated by yg, ..., yn. Thus Try = 2(CxPgrn, 4) is
the underlying algebra of the cobar construction for Pgy, see (0.2).
The differential is given on generators by

n—R
dyn = _(1 + (_ l)n)yn—l + i;l (_ l)iy“y"*i'

By use of (1.3) we even have a diagonal

A:Trn — Trn @ Trn
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which is an algebra homomorphism defined on generators by

k

A =y@1+1@u+, Z (). 0@

i, ..., jjodd=R
k=R, k=j=1

(l;) denotes the binomial coefficient.

(1.9) THEOREM: A is a chain map which induces the diagonal D
on H (Trn, d)=H (Q2Pgn). For R =3 A provides (Tgn, d) with a
coalgebra structure and we have an isomorphism

H (2(Trn, A)) = H x(20QPr )
of algebras.

This seems to be the first example in literature computing the
homology of a double loop space 2°X where X is no double
suspension.

Since our construction is adapted to the cell structure of Pry we
can identify the Hopf maps. Let

7N (PrN) = WN—E(QiPR.N)_) HN—i(QiPR.N)

be the composition of the adjunction isomorphism and the Hurewicz
map and let hy : S¥Y - Py — Pgn be the Hopf map, that is the attach-
ing map of the (N + 1)-cell in Prn+i. We derive from (1.6). The
homology classes 7(hy), i=0, 1, 2, are represented by cycles as
follows:

To(hn) by dxn+ in CyPrn

Tl(hN) by dyNH in (TR,N, d),

m(hy) by ds”'yna in Q(Trw, A).

Clearly similar calculations are available for all discrete abelian
groups H instead of 7/27 = 7,.

ProoF: For convenience of the reader we recall the classifying
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space construction B. For a topological monoid H the simplicial
space

BH :A*— Top

maps A(n) to the n-fold product H" and is defined on generating
morphisms d;, s; in A* by

pri:H"— H"', i=0
d¥=4¢ i , i=1,..,n—-1
prn: s i=n

s¥=ji:H '->H", i=0,...,n—-1

where pr; is the projection omitting the i-th coordinate and j; is the
inclusion filling in * as the i-th coordinate of the tuple. w; is given by the
multiplication w on H, that is

Wi = 1 X,,L X l:Hi‘leZX Hn—iAI__)Hifl X H Xani‘l

(As usual d;:A(n—1)—>A(n) is the injective map with image
A(n)—{i} and s;:A(n)—>A(n—1) is the surjective map with
si(i) = s;(i + 1)). (If H is path-connected and well-pointed it is well
known that the realization |BH| is a classifying space for H. This is a
‘pointed’ variant of the original Dold-Lashof result, see [5], [8].) We
now consider B(Z,).

Foro=x,=(,...,1)EZ5 and b ={b.<---<b,}Cn———1 we have
by definition of d*

0'(0, bs n) = (bh b2— bl9 LIEIEE ) br - br—l, n— br) € (lez)'+l'

This element is non degenerate only if all cooordinates are odd and in
this case o(0, b, n)=x,.;. Furthermore we have o(b,..., bt )=
Xp+1-b,- Now let i{=by, isy=b,— b, for s=2,...,r and i},y=n—b,.
Thus all i} are odd and clearly ii+--:+i,,; = n. The shuffle sign is
€.» = 1 and thus we obtain the above formula for A(y,) from (1.3).
O
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§2. A multiplication for the bar construction

In this section coalgebras and algebras are negative and algebras
are also connected. For a graded R-module V let V*=Hom(V, R) be
its dual with (V*)_, = Hom(V,, R). We have the canonical map

P:VIQW> (VR W) with ¢((Q@m)(x®y)=£(x) - n(y).

Let X be a simplicial set with X, = *. We can dualize the results of
&1 as follows. The diagonal (1.1) induces the multiplication on the
cochains C*X = (CX)*

2.1 p=A%:C*X ® C*X —> C*X

which provides C*X with an algebra structure. Its homology is the
cohomology ring of |X|.

Now assume that |X| has trivial 1-skeleton. For the bar con-
struction on (C*X, n) Eilenberg and Moore (compare [17] and [15])
obtained the following result which is dual to (1.2): There is a natural
isomorphism

2.2) é*: H*(BC*X) = H*Q|X|)

of cohomology groups so that for the loop addition map m on 2|X|
the diagram

H*(BC*X) -5 H*(BC*X ® BC*X)
(2.3) s N eeer
H*Q[X]) - H*Q|X|xQ|X])

commutes. Thus with coefficients in a field, ¢* is an isomorphism of
coalgebras. In (2.3) we suppressed an Eilenberg Zilber map from
notation.

We now determine the cup product ring structure by introducing a
multiplication on BC*X. ¢ above yields mappings :( vHer
(V®"* and

(2.4 ¢ :BC*X —> (2CX)*

¢ is compatible with the differentials of §0 and induces isomorphisms
in homology. Consider the commutative diagram
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(2.5) sC*X = (s'CX)*
L T
BC*X s (QCX)*
slfe wt It ar

BC*X @ BC*X — (C+X @ 0C.X)*

¢®~ll\ /w

(2C:X)*® (2C,X)*

with p'and i’ asin (0.3) and (0.2) and with ¢ defined in the same way as
in (2.4). ¢ and § induce isomorphisms in homology. One can check that
p*y = YA, so that the commutativity of (2.3) follows. We define the
multiplication

(2.6) u:BC*X ® BC*X —> BC*X

to be the unique coalgebra map with component p'u =i'*A*y. (We
make use of the convention that the tensor product C X C' of coalgebras
is a coalgebra by means of the diagonal (Ic @ T ® 1A Q A') where T
is the switching homomorphism.) We see that A*y = Y. Therefore we
get the following result dual to (1.4) from the proof of (1.4).

(2.7) THEOREM: Using the isomorphism (2.2) of Eilenberg-Moore the
diagram

H*(BC*X)® H*(BC*X) = H¥*(Q|X)) ® H*@|X))

| x
H*(BC*X ® BC*X) K
Lo
H*(BC*X) = H*QIX)

commutes, where x([(1Q[n]) =[] and where U is the cup
product.

Applying the bar construction again we get dually to (1.6).
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(2.8) THEOREM: If X has trivial 2-skeleton we have a natural
isomorphism of cohomology groups

H*BBC*X)= H*Q0|X])

As in (2.3) the loop addition on H*(QQ|X|) is given by the diagonal
on BBC*X. Thus with coefficients in a field, this is an isomorphism of
coalgebras.
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