COMPOSITIO MATHEMATICA

H. J. BAUES The double bar and cobar constructions

Compositio Mathematica, tome 43, nº 3 (1981), p. 331-341 <http://www.numdam.org/item?id=CM 1981 43 3 331 0>

© Foundation Compositio Mathematica, 1981, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ COMPOSITIO MATHEMATICA, Vol. 43, Fasc. 3, 1981, pag. 331-341 © 1981 Sijthoff & Noordhoff International Publishers – Alphen aan den Rijn Printed in the Netherlands

THE DOUBLE BAR AND COBAR CONSTRUCTIONS

H. J. Baues

For the homology of a connected loop space $\Omega|X|$, Adams and Eilenberg-Moore found natural isomorphisms

 $H_*(\underline{\Omega}C_*X) \cong H_*(\Omega|X|),$ $H^*(\underline{B}C^*X) \cong H^*(\Omega|X|).$

 C_*X and C^*X are the normalized chains and cochains of the simplicial set X respectively. The functor $\underline{\Omega}$ is the cobar and \underline{B} is the bar construction. We describe in this paper explicit mappings

 $\underline{\Delta}:\underline{\Omega}C_*X\longrightarrow\underline{\Omega}C_*X\otimes\underline{\Omega}C_*X$ $\mu:BC^*X\otimes BC^*X\longrightarrow BC^*X$

which induce the diagonal on $H_*(\Omega|X|)$ and the cup product on $H^*(\Omega|X|)$. $\underline{\Delta}$ is a homomorphism of algebras and an associative diagonal for $\underline{\Omega}C_*$, $\underline{\mu}$ is a homomorphism of coalgebras and an associative multiplication for $\underline{B}C^*$. To construct such mappings is an old problem brought up for example in [1], [6] or [13]. By use of $\underline{\Delta}$ and $\underline{\mu}$ we can form the double constructions, which yield natural isomorphisms

$$H_*(\underline{\Omega}\underline{\Omega}C_*X) \cong H_*(\Omega\Omega|X|)$$
$$H^*(\underline{B}\underline{B}C^*X) \cong H^*(\Omega\Omega|X|)$$

for a connected double loop space. However there is no appropriate

0010-437X/81/060331-11\$00.20/0

diagonal on $\underline{\Omega\Omega}C_*X$ and therefore further iteration is not possible. This answers the first of the two points made by Adams in the introduction of [1].

The diagonal on $\underline{\Omega}C_*X$ is also of special interest since it permits us to calculate the primitive elements in $H_*(\Omega|X|)$ over the integers. Over the rationals we thus can combine Adams' isomorphism and the Milnor-Moore theorem [10] to derive a combinatorial formula for the rational homotopy groups $\pi_*(|X|) \otimes \mathbb{Q}$. This is totally different from Quillen's and Sullivan's approach [4] and seems to be the easiest. For a finite simplicial set X the formula is of finite type and thus available for computations with computers. Such a finite combinatorial description is a classical aim of algebraic topology. The geometric background of the algebraic constructions here is discussed in [3].

§0. The algebraic bar and cobar constructions

We shall use the following notions of algebra and coalgebra. Let R be a fixed principal ideal domain of coefficients. A coalgebra C is a differential graded R-module C with an associative diagonal $\Delta: C \rightarrow C \otimes C$, a counit $1: C \rightarrow R$ and a coaugmentation $\eta: R \rightarrow C$. An algebra A is a differential graded R-module A with an associative multiplication $\mu: A \otimes A \rightarrow A$ a unit $1: R \rightarrow A$ and an augmentation $\epsilon: A \rightarrow R$, see [7]. All differentials have degree -1. An R-module V is positive if $V_n = 0$ for n < 0 and negative if $V_n = 0$ for n > 0. V is connected if $V_0 = 0$. For a connected V, which is positive or negative,

$$(0.1) T(V) = \bigoplus_{n \ge 0} V^{\otimes n}$$

has a canonical multiplication μ and a canonical diagonal Δ with

$$\mu(a_1\otimes\cdots\otimes a_r, a_{r+1}\otimes\cdots\otimes a_n) = a_1\otimes\cdots\otimes a_n$$
$$\Delta(a_1\otimes\cdots\otimes a_n) = \sum_{r=0}^n (a_1\otimes\cdots\otimes a_r)\otimes (a_{r+1}\otimes\cdots\otimes a_n).$$

(0.2) Let C be a coalgebra, which is positive and connected, and let $\tilde{\Delta}: \tilde{C} \to \tilde{C} \otimes \tilde{C}$ be its reduced diagonal, $\tilde{C} = C/C_0$. The cobar construction $\underline{\Omega}C$ is the free algebra $(T(s^{-1}\tilde{C}), d_{\Omega})$ with the differential d_{Ω} determined by the restriction

$$d_{\Omega}i^{1} = -i^{1}(s^{-1}ds) + i^{2}(s^{-1} \otimes s^{-1})\tilde{\Delta}s$$

where $i^n: V^{\otimes n} \to T(V)$ is the inclusion. s denotes the suspension of graded modules, $(sV)_n = V_{n-1}$, and a switch with s involves an appropriate sign.

(0.3) Let A be an algebra, which is positive, or negative and connected, and let $\bar{\mu} : \bar{A} \otimes \bar{A} \to \bar{A}$ be the restriction of its multiplication μ to the augmentational ideal $\bar{A} = \ker \epsilon$. The (normalized) bar construction <u>B</u>A is the free coalgebra $(T(s\bar{A}), d_B)$ with the differential d_B determined by its component

$$p^{1}d_{B} = -(sds^{-1})p^{1} + s\bar{\mu}(s^{-1}\otimes s^{-1})p^{2}$$

where $p^n: T(V) \to V^{\otimes n}$ is the projection. see [12].

§1. A diagonal for the cobar construction

In this section coalgebras and algebras are positive and coalgebras are also connected. Let Δ^* be the simplicial category with objects $\Delta(n) = \{0, \ldots, n\}$. For a simplicial set $X : \Delta^* \to \text{Ens}$ write

$$\sigma(a_0,\ldots,a_m)=i_a^*(\sigma)$$
 for $\sigma\in X_n=X(\Delta(n))$

where $i_a: \Delta(m) \to \Delta(n)$ is the injective monotone function with image $a = \{a_0 < \cdots < a_m\}$. If $X_0 = *$ is a point, the normalised chain complex C_*X is a coalgebra by virtue of the Alexander-Whitney diagonal

(1.1)
$$\Delta: C_*X \longrightarrow C_*X \otimes C_*X$$
$$\Delta(\sigma) = \sum_{i=0}^n \sigma(0, \dots, i) \otimes \sigma(i, \dots, n)$$

A degenerate σ represents the zero element in C_*X . C_*X is also the cellular chain complex of the realisation |X| which is a CW-complex. Now we assume that |X| has trivial 1-skeleton *. Adams' result in [1] is a natural isomorphism

(1.2)
$$\phi_*: H_*(\Omega C_*X) \cong H_*(\Omega|X|)$$

of Pontryagin algebras. $\underline{\Omega}C_*X$ is the cobar construction on the coalgebra (C_*X, Δ) . In fact it can be regarded as the computation of the Adams-Hilton construction [2] for the CW-complex |X|. The algebra $\underline{\Omega}C_*X$ is the tensor algebra $T(s^{-1}\tilde{C}_*X)$ on the desuspension

H.J. Baues

of $\tilde{C}_*(X) = C_*(X)/C_*(*)$. We introduce a diagonal

(1.3)
$$\underline{\Delta}:\underline{\Omega}C_*X\longrightarrow\underline{\Omega}C_*X\otimes\underline{\Omega}C_*X$$

as follows. For a subset $b = \{b_1 < \cdots < b_r\}$ of $\overline{n-1} = \{1, \ldots, n-1\}$ let $\epsilon_{a,b}$ be the shuffle sign of the partition (a, b) with $a = \overline{n-1} - b$. We use the notation

$$[\sigma_1|\ldots|\sigma_r] = s^{-1}\sigma_{i_1} \otimes \cdots \otimes s^{-1}\sigma_{i_k} \in T(s^{-1}\tilde{C}_*X)$$

where $\sigma_i \in X_{n_i}$ and where i_1, \ldots, i_k are exactly those indices $i \in \{1, \ldots, r\}$ with $n_i > 1$. Now for $\sigma \in X_n$ we define

$$\underline{\Delta}[\sigma] = \sum_{b \subset \overline{n-1}} \epsilon_{a,b}[\sigma(0,\ldots,b_1) | \sigma(b_1,\ldots,b_2) | \ldots | \sigma(b_r,\ldots,n)] \otimes [\sigma(0,b,n)]$$

where $\sigma(0, b, n) = \sigma(0, b_1, b_2, \dots, b_r, n)$. The sum is taken over all subsets $b = \{b_1, \dots, b_r\}$, $r \ge 0$, of n-1. Thus the indices $b = \emptyset$ and b = n-1 yield the summands $[\sigma] \otimes 1$ or $1 \otimes [\sigma]$ respectively. The formula determines $\underline{\Delta}$ on all generators of the algebra $\underline{\Omega}C_*X$. Extend $\underline{\Delta}$ as an algebra homomorphism. (We make use of the convention that the tensor product $A \otimes A'$ of algebras is an algebra by means of the multiplication $(\mu \otimes \mu')(1_A \otimes T \otimes 1_{A'})$ where T is the switching homomorphism with $T(x \otimes y) = (-1)^{|x||y|} y \otimes x$). One can check that $\underline{\Delta}$ provides $\underline{\Omega}C_*X$ with a coalgebra structure. $\underline{\Delta}$ is in fact a geometric diagonal, that is compare [3]:

(1.4) THEOREM: Using Adams' isomorphism (1.2) the diagram

$$H_{*}(\underline{\Omega}C_{*}X) \xrightarrow{\underline{\Delta}_{*}} H_{*}(\underline{\Omega}C_{*}X \otimes \underline{\Omega}C_{*}X)$$

$$\cong \downarrow^{\phi_{*}} \cong \downarrow^{(\phi \otimes \phi)_{*}}$$

$$H_{*}(\Omega|X|) \xrightarrow{D_{*}} H_{*}(\Omega|X| \times \Omega|X|)$$

commutes. D is the diagonal for the loop space $\Omega|X|$, that is D(y) = (y, y).

By the Milnor-Moore theorem [10] we now obtain a purely algebraic description of the rational homotopy groups of a simplicial set X with trivial 1-skeleton $|X|^1 = *$.

(1.5) COROLLARY: The Hurewicz map determines a natural

isomorphism

$$\pi_*(\Omega|X|) \otimes \mathbb{Q} = P(H_*(\underline{\Omega}C_*X) \otimes \mathbb{Q}, \underline{\Delta}_*)$$

of graded Lie algebras.

P denotes the primitive elements with respect to $\underline{\Delta}_*$, that is the kernel of the reduced diagonal $\underline{\Delta}_*: \tilde{H} \to \tilde{H} \otimes \tilde{H}$ with $\tilde{H} = \tilde{H}_*(\underline{\Omega}C_*X) \otimes \mathbb{Q}$.

If X is a finite simplicial set ΩC_*X is finite dimensional in each degree and thus Δ_* can be effectively calculated, see the examples below. A further advantage of (1.5) over Sullivan's approach [4], (which makes use of the rational simplicial de Rham algebra and is not of finite type), is that (1.4) allows us to compare the primitive elements over \mathbb{Z} with rational homotopy groups. Moreover applying the cobar construction on $(\Omega C_*X, \Delta)$ we obtain

(1.6) THEOREM: If |X| has trivial 2-skeleton, there is a natural isomorphism of algebras

$$H_*(\Omega\Omega C_*X) \cong H_*(\Omega\Omega|X|).$$

We remark here that the method cannot be extended to iterated loop spaces $\Omega'|X|$ for r > 2, since it is impossible to construct a 'nice' diagonal on $\Omega \Omega C X$, compare [3].

(1.7) EXAMPLE: Let X be a simplicial complex and let $Y \subset X$ be a subcomplex containing the 1-skeleton of X. The quotient space X/Y is the realization of a simplicial set and (1.5) yields a formula for the rational homotopy groups $\pi_*(X|Y) \otimes \mathbb{Q}$. By (1.6) we have a formula for $H_*(\Omega(X|Y))$. An especially easy example is the computation for a wedge of spheres

$$W = \vee \Delta^{n_i} / \partial \Delta^{n_i}, n_i \geq 2.$$

In this case the cobar construction $\underline{\Omega}C_*W = T(s^{-1}\tilde{H}_*W)$ has trivial differential and the diagonal $\underline{\Delta}$ in (1.3) has primitive values on generators $s^{-1}x$, $x \in \tilde{H}_*W$, that is

$$\underline{\Delta} s^{-1} x = 1 \otimes (s^{-1} x) + (s^{-1} x) \otimes 1.$$

Thus we obtain from (1.5) a well known theorem of Hilton:

The rational homotopy group $\pi_*(\Omega W) \otimes \mathbb{Q}$ of a wedge of spheres W is the free Lie algebra generated by $s^{-1}\tilde{H}_*(W) \otimes \mathbb{Q}$.

Furthermore we obtain from (1.6) an isomorphism of Milgram in [9]

$$H_*(\Omega\Omega W) = H_*(\Omega(T(s^{-1}H_*W), \underline{\Delta})).$$

(1.8) EXAMPLE: Let P_N be the real projective N-space. The truncated spaces

$$P_{R,N} = P_N/P_{R-1} = e^0 \bigcup e^R \bigcup e^{R+1} \bigcup \ldots \bigcup e^N$$

are CW-complexes with exactly one cell e^n in each dimension $R \le n \le N$. We obtain P_{∞} as the realization of the geometric bar construction $\underline{B}(\mathbb{Z}_2)$ which is a simplicial set. P_N is its N-dimensional skeleton and the cell e^n is given by the single non degenerate element $x_n = (1, ..., 1) \in (\mathbb{Z}_2)^n$. Thus $C_*P_{R,N}$ is a free chain complex generated by $x_0 = 1$ and $x_R, ..., x_N$ with degree $|x_n| = n$. The boundary is

$$dx_n = \sum_{i=0}^n (-1)^i d^*_i x_n = (1 + (-1)^n) x_{n-1}, n > R,$$

since $d_i^* x_n = \mu_i(x_n)$ is degenerate for 0 < i < n. By use of (1.1) the diagonal on $C_* P_{R,N}$ is

$$\Delta(x_n) = 1 \bigotimes x_n + x_n \bigotimes 1 + \sum_{i=R}^{N-R} x_i \bigotimes x_{n-i}$$

Let $y_n = s^{-1}x_n$ be the desuspension of the element x_n and let

$$T_{R,N} = T(y_R,\ldots,y_N), R \geq 2,$$

be the free ring generated by y_R, \ldots, y_N . Thus $T_{R,N} = \Omega(C_*P_{R,N}, \Delta)$ is the underlying algebra of the cobar construction for $P_{R,N}$, see (0.2). The differential is given on generators by

$$dy_n = -(1+(-1)^n)y_{n-1} + \sum_{i=R}^{n-R} (-1)^i y_i y_{n-i}.$$

By use of (1.3) we even have a diagonal

$$\underline{\Delta}: T_{R,N} \longrightarrow T_{R,N} \otimes T_{R,N}$$

which is an algebra homomorphism defined on generators by

$$\underline{\Delta}(\mathbf{y}_n) = \mathbf{y}_n \otimes \mathbf{1} + \mathbf{1} \otimes \mathbf{y}_n + \sum_{\substack{i_1 + \cdots + i_j + k = n+j \\ i_1, \cdots, i_j \text{ odd} \geq R \\ k \geq R, k \geq j \geq 1}} \binom{k}{j} \mathbf{y}_{i_1} \cdots \mathbf{y}_{i_j} \otimes \mathbf{y}_k$$

 $\binom{k}{j}$ denotes the binomial coefficient.

(1.9) THEOREM: $\underline{\Delta}$ is a chain map which induces the diagonal D_* on $H_*(T_{R,N}, d) \cong H_*(\Omega P_{R,N})$. For $R \ge 3 \underline{\Delta}$ provides $(T_{R,N}, d)$ with a coalgebra structure and we have an isomorphism

$$H_*(\Omega(T_{R,N}, \Delta)) \cong H_*(\Omega\Omega P_{R,N})$$

of algebras.

This seems to be the first example in literature computing the homology of a double loop space $\Omega^2 X$ where X is no double suspension.

Since our construction is adapted to the cell structure of $P_{R,N}$ we can identify the Hopf maps. Let

$$\pi_i:\pi_N(P_{R,N})\cong\pi_{N-i}(\Omega^i P_{R,N})\longrightarrow H_{N-i}(\Omega^i P_{R,N})$$

be the composition of the adjunction isomorphism and the Hurewicz map and let $h_N: S^N \to P_N \to P_{R,N}$ be the Hopf map, that is the attaching map of the (N + 1)-cell in $P_{R,N+1}$. We derive from (1.6). The homology classes $\tau_i(h_N)$, i = 0, 1, 2, are represented by cycles as follows:

$$\tau_0(h_N) by dx_{N+1} in C_*P_{R,N}$$

$$\tau_1(h_N) by dy_{N+1} in (T_{R,N}, d),$$

$$\tau_2(h_N) by ds^{-1}y_{N+1} in \underline{\Omega}(T_{R,N}, \underline{\Delta}).$$

Clearly similar calculations are available for all discrete abelian groups H instead of $\mathbb{Z}/2\mathbb{Z} = \mathbb{Z}_2$.

PROOF: For convenience of the reader we recall the classifying

H.J. Baues

space construction <u>B</u>. For a topological monoid H the simplicial space

$$BH: \Delta^* \longrightarrow Top$$

maps $\Delta(n)$ to the *n*-fold product H^n and is defined on generating morphisms d_i , s_i in Δ^* by

$$d_{i}^{*} = \begin{cases} pr_{1}: H^{n} \longrightarrow H^{n-1}, & i = 0\\ \mu_{i}: & , & i = 1, \dots, n-1\\ pr_{n}: & , & i = n \end{cases}$$

$$s_{i}^{*} = j_{i+1}: H^{n-1} \rightarrow H^{n}, \qquad i = 0, \dots, n-1$$

where pr_i is the projection omitting the *i*-th coordinate and j_i is the inclusion filling in * as the *i*-th coordinate of the tuple. μ_i is given by the multiplication μ on H, that is

$$\mu_i = 1 \times \mu \times 1 : H^{i-1} \times H^2 \times H^{n-i-1} \to H^{i-1} \times H \times H^{n-i-1}$$

(As usual $d_i: \Delta(n-1) \rightarrow \Delta(n)$ is the injective map with image $\Delta(n) - \{i\}$ and $s_i: \Delta(n) \rightarrow \Delta(n-1)$ is the surjective map with $s_i(i) = s_i(i+1)$). (If H is path-connected and well-pointed it is well known that the realization $|\underline{B}H|$ is a classifying space for H. This is a 'pointed' variant of the original Dold-Lashof result, see [5], [8].) We now consider $B(\mathbb{Z}_2)$.

For $\sigma = x_n = (1, ..., 1) \in \mathbb{Z}_2^n$ and $b = \{b_1 < \cdots < b_r\} \subset \overline{n-1}$ we have by definition of d_1^*

$$\sigma(0, b, n) = (b_1, b_2 - b_1, \dots, b_r - b_{r-1}, n - b_r) \in (\mathbb{Z}/2\mathbb{Z})^{r+1}.$$

This element is non degenerate only if all cooordinates are odd and in this case $\sigma(0, b, n) = x_{r+1}$. Furthermore we have $\sigma(b_i, \ldots, b_{i+1}) = x_{b_i+1-b_i}$. Now let $i'_1 = b_1$, $i'_s = b_s - b_{s-1}$ for $s = 2, \ldots, r$ and $i'_{r+1} = n - b_r$. Thus all i'_s are odd and clearly $i'_1 + \cdots + i'_{r+1} = n$. The shuffle sign is $\epsilon_{a,b} = 1$ and thus we obtain the above formula for $\Delta(y_n)$ from (1.3).

§2. A multiplication for the bar construction

In this section coalgebras and algebras are negative and algebras are also connected. For a graded *R*-module *V* let $V^* = \text{Hom}(V, R)$ be its dual with $(V^*)_{-n} = \text{Hom}(V_n, R)$. We have the canonical map

$$\psi: V^* \otimes W^* \to (V \otimes W)^* \text{ with } \psi(\xi \otimes \eta)(x \otimes y) = \xi(x) \cdot \eta(y).$$

Let X be a simplicial set with $X_0 = *$. We can dualize the results of &1 as follows. The diagonal (1.1) induces the multiplication on the cochains $C^*X = (C_*X)^*$

(2.1)
$$\mu = \Delta^* \psi : C^* X \otimes C^* X \longrightarrow C^* X$$

which provides C^*X with an algebra structure. Its homology is the cohomology ring of |X|.

Now assume that |X| has trivial 1-skeleton. For the bar construction on (C^*X, μ) Eilenberg and Moore (compare [17] and [15]) obtained the following result which is dual to (1.2): There is a natural isomorphism

(2.2)
$$\phi^*: H^*(BC^*X) \cong H^*(\Omega|X|)$$

of cohomology groups so that for the loop addition map m on $\Omega|X|$ the diagram

commutes. Thus with coefficients in a field, ϕ^* is an isomorphism of coalgebras. In (2.3) we suppressed an Eilenberg Zilber map from notation.

We now determine the cup product ring structure by introducing a multiplication on <u>B</u>C*X. ψ above yields mappings $\psi: (V^*)^{\otimes n} \rightarrow (V^{\otimes n})^*$ and

(2.4)
$$\psi: BC^*X \longrightarrow (\Omega C_*X)^*.$$

 ψ is compatible with the differentials of §0 and induces isomorphisms in homology. Consider the commutative diagram

H.J. Baues

$$(2.5) \qquad s \bar{C}^* X == (s^{-1} \bar{C}_* X)^*$$

$$\downarrow^{p^1} \qquad \uparrow^{i^{1*}}$$

$$\underline{B} C^* X \xrightarrow{\psi} (\Omega C_* X)^*$$

$$\downarrow^{\varphi} \downarrow^{\varphi} \qquad \downarrow^{\mu^*} \downarrow^{\varphi^*}$$

$$\underline{B} C^* X \otimes \underline{B} C^* X \xrightarrow{\psi} (\underline{\Omega} C_* X \otimes \underline{\Omega} C_* X)^*$$

$$\downarrow^{\varphi} \downarrow^{\varphi} \qquad \swarrow^{\varphi} \downarrow^{\varphi}$$

$$(\underline{\Omega} C_* X)^* \otimes (\underline{\Omega} C_* X)^*$$

with p^1 and i^1 as in (0.3) and (0.2) and with $\underline{\psi}$ defined in the same way as ψ in (2.4). ψ and $\underline{\psi}$ induce isomorphisms in homology. One can check that $\mu^* \psi = \underline{\psi} \Delta$, so that the commutativity of (2.3) follows. We define the multiplication

$$(2.6) \qquad \mu: BC^*X \otimes \underline{B}C^*X \longrightarrow \underline{B}C^*X$$

to be the unique coalgebra map with component $p^{1}\underline{\mu} = i^{1*}\underline{\Delta}^{*}\underline{\psi}$. (We make use of the convention that the tensor product $C \otimes C'$ of coalgebras is a coalgebra by means of the diagonal $(1_C \otimes T \otimes 1_{C'})(\Delta \otimes \Delta')$ where T is the switching homomorphism.) We see that $\underline{\Delta}^{*}\underline{\psi} = \underline{\psi}\underline{\mu}$. Therefore we get the following result dual to (1.4) from the proof of (1.4).

(2.7) THEOREM: Using the isomorphism (2.2) of Eilenberg-Moore the diagram

commutes, where $x([\xi] \otimes [\eta]) = [\xi \otimes \eta]$ and where \cup is the cup product.

Applying the bar construction again we get dually to (1.6).

340

(2.8) THEOREM: If X has trivial 2-skeleton we have a natural isomorphism of cohomology groups

$$H^*(\underline{BB}C^*X) \cong H^*(\Omega\Omega|X|)$$

As in (2.3) the loop addition on $H^*(\Omega\Omega|X|)$ is given by the diagonal on <u>BB</u>C*X. Thus with coefficients in a field, this is an isomorphism of coalgebras.

REFERENCES

- J.F. ADAMS: On the cobar construction. Proc. Nat. Acad. Sci. (USA) 42 (1956) 409-412.
- [2] J.F. ADAMS, and P.J. HILTON: On the chain algebra of a loop space. Comment. Math. Helv. 30 (1956), 305-330.
- [3] H.J. BAUES: Geometry of loop spaces and the cobar construction. Memoirs of the AMS 25 (1980) 230 ISSN 0065-9266.
- [4] A.K. BOUSFIELD and V.K.A.M. GUGENHEIM: On PL de Rham theory and rational homotopy type. *Memoirs of the AMS 179* (1976).
- [5] A. DOLD and R. LASHOF: Principal quasifibrings and fiber homotopy equivalence of bundles. Ill. J. Math. 3 (1959), 285-305.
- [6] B. DRACHMAN: A diagonal map for the cobar construction. Bol. Soc. Mat. Mexicana (2) 12 (1967) 81–91.
- [7] D. HUSEMOLLER, J.C. MOORE and J. STASHEFF: Differential homological algebra and homogeneous spaces. J. pure appl. Algebra 5 (1974) 113-185.
- [8] J.R. MILGRAM: The bar construction and abelian H-spaces. Ill. J. Math. 11 (1967) 242-250.
- [9] J.R. MILGRAM: Iterated loop spaces. Ann. of Math. 84 (1966) 386-403.
- [10] J. MILNOR and J.C. MOORE: On the structure of Hopf algebras. Ann. Math. 81 (1965) 211-264.
- [11] J.C. MOORE: Differential homological algebra. Actes du Congr. Intern. des Mathématiciens (1970) 335-336.
- [12] H.J. MUNKHOLM: The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps. J. pure and appl. Algebra 5 (1974) 1-50.
- [13] L. SMITH: Homological algebra and the Eilenberg-Moore spectral sequence. Trans. of AMS 129 (1967) 58-93.

(Oblatum 26-VI-1980 & 12-XI-1980)

Math. Institut und Sonderforschungsbereich 40 der Universität Bonn 53 Bonn Wegelerstr. 10