Compositio Mathematica

H. J. BaUES
The double bar and cobar constructions
Compositio Mathematica, tome 43, n 3 (1981), p. 331-341
http://www.numdam.org/item?id=CM_1981__43_3_331_0

© Foundation Compositio Mathematica, 1981, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE DOUBLE BAR AND COBAR CONSTRUCTIONS

H. J. Baues

For the homology of a connected loop space $\Omega|X|$, Adams and Eilenberg-Moore found natural isomorphisms

$$
\begin{aligned}
& H_{*}\left(\underline{\Omega} C_{*} X\right) \cong H_{*}(\Omega|X|) \\
& H^{*}\left(\underline{B} C^{*} X\right) \cong H^{*}(\Omega|X|)
\end{aligned}
$$

$C_{*} X$ and $C^{*} X$ are the normalized chains and cochains of the simplicial set X respectively. The functor $\underline{\Omega}$ is the cobar and \underline{B} is the bar construction. We describe in this paper explicit mappings

$$
\begin{aligned}
& \underline{\Delta}: \underline{\Omega} C_{*} X \longrightarrow \underline{\Omega} C_{*} X \otimes \underline{\Omega} C_{*} X \\
& \underline{\mu}: \underline{B} C^{*} X \otimes \underline{B} C^{*} X \longrightarrow \underline{B} C^{*} X
\end{aligned}
$$

which induce the diagonal on $H_{*}(\Omega|X|)$ and the cup product on $H^{*}(\Omega|X|) . \underline{\Delta}$ is a homomorphism of algebras and an associative diagonal for $\underline{\Omega} C_{*}, \underline{\mu}$ is a homomorphism of coalgebras and an associative multiplication for $\underline{B} C^{*}$. To construct such mappings is an old problem brought up for example in [1], [6] or [13]. By use of $\underline{\Delta}$ and $\underline{\mu}$ we can form the double constructions, which yield natural isomorphisms

$$
\begin{aligned}
& H_{*}\left(\underline{\Omega} \underline{\Omega} C_{*} X\right) \cong H_{*}(\Omega \Omega|X|) \\
& H^{*}\left(\underline{B} \underline{B} C^{*} X\right) \cong H^{*}(\Omega \Omega|X|)
\end{aligned}
$$

for a connected double loop space. However there is no appropriate
diagonal on $\underline{\Omega \Omega} C_{*} X$ and therefore further iteration is not possible. This answers the first of the two points made by Adams in the introduction of [1].

The diagonal on $\underline{\Omega} C_{*} X$ is also of special interest since it permits us to calculate the primitive elements in $H_{*}(\Omega|X|)$ over the integers. Over the rationals we thus can combine Adams' isomorphism and the Milnor-Moore theorem [10] to derive a combinatorial formula for the rational homotopy groups $\pi_{*}(|X|) \otimes \mathbb{Q}$. This is totally different from Quillen's and Sullivan's approach [4] and seems to be the easiest. For a finite simplicial set X the formula is of finite type and thus available for computations with computers. Such a finite combinatorial description is a classical aim of algebraic topology. The geometric background of the algebraic constructions here is discussed in [3].

§0. The algebraic bar and cobar constructions

We shall use the following notions of algebra and coalgebra. Let R be a fixed principal ideal domain of coefficients. A coalgebra C is a differential graded R-module C with an associative diagonal $\Delta: C \rightarrow$ $C \otimes C$, a counit $1: C \rightarrow R$ and a coaugmentation $\eta: R \rightarrow C$. An algebra A is a differential graded R-module A with an associative multiplication $\mu: A \otimes A \rightarrow A$ a unit $1: R \rightarrow A$ and an augmentation $\epsilon: A \rightarrow$ R, see [7]. All differentials have degree -1 . An R-module V is positive if $V_{n}=0$ for $n<0$ and negative if $V_{n}=0$ for $n>0 . V$ is connected if $V_{0}=0$. For a connected V, which is positive or negative,

$$
\begin{equation*}
T(V)=\bigoplus_{n \geq 0} V^{\otimes n} \tag{0.1}
\end{equation*}
$$

has a canonical multiplication μ and a canonical diagonal Δ with

$$
\begin{gathered}
\mu\left(a_{1} \otimes \cdots \otimes a_{r}, a_{r+1} \otimes \cdots \otimes a_{n}\right)=a_{1} \otimes \cdots \otimes a_{n} \\
\Delta\left(a_{1} \otimes \cdots \otimes a_{n}\right)=\sum_{r=0}^{n}\left(a_{1} \otimes \cdots \otimes a_{r}\right) \otimes\left(a_{r+1} \otimes \cdots \otimes a_{n}\right) .
\end{gathered}
$$

(0.2) Let C be a coalgebra, which is positive and connected, and let $\tilde{\Delta}: \tilde{C} \rightarrow \tilde{C} \otimes \tilde{C}$ be its reduced diagonal, $\tilde{C}=C / C_{0}$. The cobar construction $\underline{\Omega} C$ is the free algebra $\left(T\left(s^{-1} \tilde{C}\right), d_{\Omega}\right)$ with the differential d_{Ω} determined by the restriction

$$
d_{\Omega} i^{1}=-i^{1}\left(s^{-1} d s\right)+i^{2}\left(s^{-1} \otimes s^{-1}\right) \tilde{\Delta} s
$$

where $i^{n}: V^{\otimes n} \rightarrow T(V)$ is the inclusion. s denotes the suspension of graded modules, $(s V)_{n}=V_{n-1}$, and a switch with s involves an appropriate sign.
(0.3) Let A be an algebra, which is positive, or negative and connected, and let $\bar{\mu}: \bar{A} \otimes \bar{A} \rightarrow \bar{A}$ be the restriction of its multiplication μ to the augmentational ideal $\bar{A}=\operatorname{ker} \epsilon$. The (normalized) bar construction $\underline{B} A$ is the free coalgebra $\left(T(s \bar{A}), d_{B}\right)$ with the differential d_{B} determined by its component

$$
p^{1} d_{B}=-\left(s d s^{-1}\right) p^{1}+s \bar{\mu}\left(s^{-1} \otimes s^{-1}\right) p^{2}
$$

where $p^{n}: T(V) \rightarrow V^{\otimes n}$ is the projection. see [12].

§1. A diagonal for the cobar construction

In this section coalgebras and algebras are positive and coalgebras are also connected. Let Δ^{*} be the simplicial category with objects $\Delta(n)=\{0, \ldots, n\}$. For a simplicial set $X: \Delta^{*} \rightarrow$ Ens write

$$
\sigma\left(a_{0}, \ldots, a_{m}\right)=i_{a}^{*}(\sigma) \text { for } \sigma \in X_{n}=X(\Delta(n))
$$

where $i_{a}: \Delta(m) \rightarrow \Delta(n)$ is the injective monotone function with image $a=\left\{a_{0}<\cdots<a_{m}\right\}$. If $X_{0}=*$ is a point, the normalised chain complex $C_{*} X$ is a coalgebra by virtue of the Alexander-Whitney diagonal

$$
\begin{gather*}
\Delta: C_{*} X \longrightarrow C_{*} X \otimes C_{*} X \tag{1.1}\\
\Delta(\sigma)=\sum_{i=0}^{n} \sigma(0, \ldots, i) \otimes \sigma(i, \ldots, n)
\end{gather*}
$$

A degenerate σ represents the zero element in $C_{*} X . C_{*} X$ is also the cellular chain complex of the realisation $|X|$ which is a $C W$-complex. Now we assume that $|X|$ has trivial 1-skeleton *. Adams' result in [1] is a natural isomorphism

$$
\begin{equation*}
\phi_{*}: H_{*}\left(\underline{\Omega} C_{*} X\right) \cong H_{*}(\Omega|X|) \tag{1.2}
\end{equation*}
$$

of Pontryagin algebras. $\underline{\Omega} C_{*} X$ is the cobar construction on the coalgebra $\left(C_{*} X, \Delta\right)$. In fact it can be regarded as the computation of the Adams-Hilton construction [2] for the $C W$-complex $|X|$. The algebra $\underline{\Omega} C_{*} X$ is the tensor algebra $T\left(s^{-1} \tilde{C}_{*} X\right)$ on the desuspension
of $\tilde{C}_{*}(X)=C_{*}(X) / C_{*}(*)$. We introduce a diagonal

$$
\begin{equation*}
\underline{\Delta}: \underline{\Omega} C_{*} X \longrightarrow \underline{\Omega} C_{*} X \otimes \underline{\Omega} C_{*} X \tag{1.3}
\end{equation*}
$$

as follows. For a subset $b=\left\{b_{1}<\cdots<b_{r}\right\}$ of $\overline{n-1}=\{1, \ldots, n-1\}$ let $\epsilon_{a, b}$ be the shuffle sign of the partition (a, b) with $a=\overline{n-1}-b$. We use the notation

$$
\left[\sigma_{1}|\ldots| \sigma_{r}\right]=s^{-1} \sigma_{i_{1}} \otimes \cdots \otimes s^{-1} \sigma_{i_{k}} \in T\left(s^{-1} \tilde{C}_{*} X\right)
$$

where $\sigma_{i} \in X_{n_{1}}$ and where i_{1}, \ldots, i_{k} are exactly those indices $i \in$ $\{1, \ldots, r\}$ with $n_{i}>1$. Now for $\sigma \in X_{n}$ we define
$\underline{\Delta}[\sigma]=\sum_{b \subset \overline{n-1}} \epsilon_{a, b}\left[\sigma\left(0, \ldots, b_{1}\right)\left|\sigma\left(b_{1}, \ldots, b_{2}\right)\right| \ldots \mid \sigma\left(b_{r}, \ldots, n\right)\right] \otimes[\sigma(0, b, n)]$
where $\sigma(0, b, n)=\sigma\left(0, b_{1}, b_{2}, \ldots, b_{r}, n\right)$. The sum is taken over all subsets $b=\left\{b_{1}, \ldots, b_{r}\right\}, r \geq 0$, of $\overline{n-1}$. Thus the indices $b=\emptyset$ and $b=\overline{n-1}$ yield the summands $[\sigma] \otimes 1$ or $1 \otimes[\sigma]$ respectively. The formula determines $\underline{\Delta}$ on all generators of the algebra $\underline{\Omega} C_{*} X$. Extend $\underline{\Delta}$ as an algebra homomorphism. (We make use of the convention that the tensor product $A \otimes A^{\prime}$ of algebras is an algebra by means of the multiplication $\left(\mu \otimes \mu^{\prime}\right)\left(1_{A} \otimes T \otimes 1_{A^{\prime}}\right) \quad$ where T is the switching homomorphism with $\left.T(x \otimes y)=(-1)^{|x \| y|} y \otimes x\right)$. One can check that $\underline{\Delta}$ provides $\underline{\Omega} C_{*} X$ with a coalgebra structure. $\underline{\Delta}$ is in fact a geometric diagonal, that is compare [3]:
(1.4) Theorem: Using Adams' isomorphism (1.2) the diagram

$$
\begin{aligned}
& H_{*}\left(\underline{\Omega} C_{*} X\right) \xrightarrow{\Delta_{*}} H_{*}\left(\underline{\Omega} C_{*} X \otimes \underline{\Omega} C_{*} X\right) \\
& \cong \mid \phi_{*} \\
& \cong \mid(\phi \otimes \phi)_{*} \\
& H_{*}(\Omega|X|) \xrightarrow[D_{*}]{ } H_{*}(\Omega|X| \times \Omega|X|)
\end{aligned}
$$

commutes. D is the diagonal for the loop space $\Omega|X|$, that is $D(y)=$ (y, y).

By the Milnor-Moore theorem [10] we now obtain a purely algebraic description of the rational homotopy groups of a simplicial set X with trivial 1-skeleton $|X|^{1}=*$.
(1.5) Corollary: The Hurewicz map determines a natural
isomorphism

$$
\pi_{*}(\Omega|X|) \otimes \mathbb{Q}=P\left(H_{*}\left(\underline{\Omega} C_{*} X\right) \otimes \mathbb{Q}, \underline{\Delta} *\right)
$$

of graded Lie algebras.
P denotes the primitive elements with respect to Δ_{*}, that is the kernel of the reduced diagonal $\underline{\Delta}_{*}: \tilde{H} \rightarrow \tilde{H} \otimes \tilde{H}$ with $\tilde{H}=\tilde{H}_{*}\left(\underline{\Omega} C_{*} X\right) \otimes \mathbb{Q}$.

If X is a finite simplicial set $\underline{\Omega} C_{*} X$ is finite dimensional in each degree and thus $\underline{\Delta}_{*}$ can be effectively calculated, see the examples below. A further advantage of (1.5) over Sullivan's approach [4], (which makes use of the rational simplicial de Rham algebra and is not of finite type), is that (1.4) allows us to compare the primitive elements over \mathbb{Z} with rational homotopy groups. Moreover applying the cobar construction on $\left(\underline{\Omega} C_{*} X, \underline{\Delta}\right)$ we obtain
(1.6) Theorem: If $|X|$ has trivial 2-skeleton, there is a natural isomorphism of algebras

$$
H_{*}\left(\underline{\Omega} \Omega C_{*} X\right) \cong H_{*}(\Omega \Omega|X|) .
$$

We remark here that the method cannot be extended to iterated loop spaces $\Omega^{r}|X|$ for $r>2$, since it is impossible to construct a 'nice' diagonal on $\underline{\Omega} \underline{\Omega} X$, compare [3].
(1.7) Example: Let X be a simplicial complex and let $Y \subset X$ be a subcomplex containing the 1 -skeleton of X. The quotient space X / Y is the realization of a simplicial set and (1.5) yields a formula for the rational homotopy groups $\pi_{*}(X / Y) \otimes \mathbb{Q}$. By (1.6) we have a formula for $H_{*}(\Omega(X / Y))$. An especially easy example is the computation for a wedge of spheres

$$
W=v \Delta^{n_{i}} / \partial \Delta^{n_{i}}, n_{i} \geq 2
$$

In this case the cobar construction $\underline{\Omega} C_{*} W=T\left(s^{-1} \tilde{H}_{*} W\right)$ has trivial differential and the diagonal $\underline{\Delta}$ in (1.3) has primitive values on generators $s^{-1} x, x \in \tilde{H}_{*} W$, that is

$$
\underline{\Delta} s^{-1} x=1 \otimes\left(s^{-1} x\right)+\left(s^{-1} x\right) \otimes 1
$$

Thus we obtain from (1.5) a well known theorem of Hilton:

The rational homotopy group $\pi_{*}(\Omega W) \otimes \mathbb{Q}$ of a wedge of spheres W is the free Lie algebra generated by $s^{-1} \tilde{H}_{*}(W) \otimes \mathbb{Q}$.

Furthermore we obtain from (1.6) an isomorphism of Milgram in [9]

$$
H_{*}(\Omega \Omega W)=H_{*}\left(\underline{\Omega}\left(T\left(s^{-1} \tilde{H}_{*} W\right), \underline{\Delta}\right)\right) .
$$

(1.8) Example: Let P_{N} be the real projective N-space. The truncated spaces

$$
P_{R, N}=P_{N} / P_{R-1}=e^{0} \bigcup e^{R} \bigcup e^{R+1} \bigcup \ldots \bigcup e^{N}
$$

are $C W$-complexes with exactly one cell e^{n} in each dimension $R \leq$ $n \leq N$. We obtain P_{∞} as the realization of the geometric bar construction $\underline{B}\left(\mathbb{Z}_{2}\right)$ which is a simplicial set. P_{N} is its N-dimensional skeleton and the cell e^{n} is given by the single non degenerate element $x_{n}=(1, \ldots, 1) \in\left(\mathbb{Z}_{2}\right)^{n}$. Thus $C_{*} P_{R, N}$ is a free chain complex generated by $x_{0}=1$ and x_{R}, \ldots, x_{N} with degree $\left|x_{n}\right|=n$. The boundary is

$$
d x_{n}=\sum_{i=0}^{n}(-1)^{i} d_{i}^{*} x_{n}=\left(1+(-1)^{n}\right) x_{n-1}, n>R,
$$

since $d_{i}^{*} x_{n}=\mu_{i}\left(x_{n}\right)$ is degenerate for $0<i<n$. By use of (1.1) the diagonal on $C_{*} P_{R, N}$ is

$$
\Delta\left(x_{n}\right)=1 \otimes x_{n}+x_{n} \otimes 1+\sum_{i=R}^{N-R} x_{i} \otimes x_{n-i} .
$$

Let $y_{n}=s^{-1} x_{n}$ be the desuspension of the element x_{n} and let

$$
T_{R, N}=T\left(y_{R}, \ldots, y_{N}\right), R \geq 2
$$

be the free ring generated by y_{R}, \ldots, y_{N}. Thus $T_{R, N}=\underline{\Omega}\left(C_{*} P_{R, N}, \Delta\right)$ is the underlying algebra of the cobar construction for $P_{R, N}$, see (0.2). The differential is given on generators by

$$
d y_{n}=-\left(1+(-1)^{n}\right) y_{n-1}+\sum_{i=R}^{n-R}(-1)^{i} y_{i} y_{n-i}
$$

By use of (1.3) we even have a diagonal

$$
\underline{\Delta}: T_{R, N} \longrightarrow T_{R, N} \otimes T_{R, N}
$$

which is an algebra homomorphism defined on generators by

$$
\underline{\Delta}\left(y_{n}\right)=y_{n} \otimes 1+1 \otimes y_{n}+\sum_{\substack{i_{1}+\cdots+i_{i}+k=n+j \\ i_{1}, \ldots, j_{j} \text { odd } \\ k \geq R, k \geq j \geq 1}}\binom{k}{j} y_{i_{1}} \ldots y_{i_{j}} \otimes y_{k}
$$

$\binom{k}{\mathrm{j}}$ denotes the binomial coefficient.
(1.9) Theorem: $\underline{\Delta}$ is a chain map which induces the diagonal D_{*} on $H_{*}\left(T_{R, N}, d\right) \cong H_{*}\left(\Omega P_{R, N}\right)$. For $R \geq 3 \underline{\Delta}$ provides $\left(T_{R, N}, d\right)$ with a coalgebra structure and we have an isomorphism

$$
H_{*}\left(\underline{\Omega}\left(T_{R, N}, \underline{\Delta}\right)\right) \cong H_{*}\left(\Omega \Omega P_{R, N}\right)
$$

of algebras.
This seems to be the first example in literature computing the homology of a double loop space $\Omega^{2} X$ where X is no double suspension.

Since our construction is adapted to the cell structure of $P_{R, N}$ we can identify the Hopf maps. Let

$$
\tau_{i}: \pi_{N}\left(P_{R, N}\right) \cong \pi_{N-i}\left(\Omega^{i} P_{R, N}\right) \longrightarrow H_{N-i}\left(\Omega^{i} P_{R, N}\right)
$$

be the composition of the adjunction isomorphism and the Hurewicz map and let $h_{N}: S^{N} \rightarrow P_{N} \rightarrow P_{R, N}$ be the Hopf map, that is the attaching map of the $(N+1)$-cell in $P_{R, N+1}$. We derive from (1.6). The homology classes $\tau_{i}\left(h_{N}\right), i=0,1,2$, are represented by cycles as follows:

$$
\begin{array}{llll}
\tau_{0}\left(h_{N}\right) \text { by } & d x_{N+1} & \text { in } & C_{*} P_{R, N} \\
\tau_{1}\left(h_{N}\right) \text { by } & d y_{N+1} & \text { in } & \left(T_{R, N}, d\right), \\
\tau_{2}\left(h_{N}\right) \text { by } & d s^{-1} y_{N+1} & \text { in } & \underline{\Omega}\left(T_{R, N}, \underline{\Delta}\right) .
\end{array}
$$

Clearly similar calculations are available for all discrete abelian groups H instead of $\mathbb{Z} / 2 \mathbb{Z}=\mathbb{Z}_{2}$.

Proof: For convenience of the reader we recall the classifying
space construction B. For a topological monoid H the simplicial space

$$
\underline{B} H: \Delta^{*} \longrightarrow T o p
$$

maps $\Delta(n)$ to the n-fold product H^{n} and is defined on generating morphisms d_{i}, s_{i} in Δ^{*} by

$$
\begin{aligned}
& d_{i}^{*}= \begin{cases}p r_{1}: H^{n} \longrightarrow H^{n-1}, & i=0 \\
\mu_{i}: & i=1, \ldots, n-1 \\
p r_{n}: & , \\
s_{i}^{*}=j_{i+1}: H^{n-1} \rightarrow H^{n}, & i=0, \ldots, n-1\end{cases}
\end{aligned}
$$

where $p r_{i}$ is the projection omitting the i-th coordinate and j_{i} is the inclusion filling in $*$ as the i-th coordinate of the tuple. μ_{i} is given by the multiplication μ on H, that is

$$
\mu_{i}=1 \times \mu \times 1: H^{i-1} \times H^{2} \times H^{n-i-1} \rightarrow H^{i-1} \times H \times H^{n-i-1}
$$

(As usual $d_{i}: \Delta(n-1) \rightarrow \Delta(n)$ is the injective map with image $\Delta(n)-\{i\}$ and $s_{i}: \Delta(n) \rightarrow \Delta(n-1)$ is the surjective map with $s_{i}(i)=s_{i}(i+1)$). (If H is path-connected and well-pointed it is well known that the realization $|\underline{B} H|$ is a classifying space for H. This is a 'pointed' variant of the original Dold-Lashof result, see [5], [8].) We now consider $\underline{B}\left(\mathbb{Z}_{2}\right)$.

For $\sigma=x_{n}=(1, \ldots, 1) \in \mathbb{Z}_{2}^{n}$ and $b=\left\{b_{1}<\cdots<b_{r}\right\} \subset \overline{n-1}$ we have by definition of d_{i}^{*}

$$
\sigma(0, b, n)=\left(b_{1}, b_{2}-b_{1}, \ldots, b_{r}-b_{r-1}, n-b_{r}\right) \in(\mathbb{Z} / 2 \mathbb{Z})^{r+1} .
$$

This element is non degenerate only if all cooordinates are odd and in this case $\sigma(0, b, n)=x_{r+1}$. Furthermore we have $\sigma\left(b_{i}, \ldots, b_{i+1}\right)=$ $x_{b_{i}+1-b_{i}}$. Now let $i_{1}^{\prime}=b_{1}, i_{s}^{\prime}=b_{s}-b_{s-1}$ for $s=2, \ldots, r$ and $i_{r+1}^{\prime}=n-b_{r}$. Thus all i_{s}^{\prime} are odd and clearly $i_{1}^{\prime}+\cdots+i_{r+1}^{\prime}=n$. The shuffle sign is $\epsilon_{a, b}=1$ and thus we obtain the above formula for $\underline{\Delta}\left(y_{n}\right)$ from (1.3).

§2. A multiplication for the bar construction

In this section coalgebras and algebras are negative and algebras are also connected. For a graded R-module V let $V^{\#}=\operatorname{Hom}(V, R)$ be its dual with $\left(V^{*}\right)_{-n}=\operatorname{Hom}\left(V_{n}, R\right)$. We have the canonical map

$$
\psi: V^{\#} \otimes W^{\#} \rightarrow(V \otimes W)^{\#} \quad \text { with } \quad \psi(\xi \otimes \eta)(x \otimes y)=\xi(x) \cdot \eta(y) .
$$

Let X be a simplicial set with $X_{0}=*$. We can dualize the results of $\& 1$ as follows. The diagonal (1.1) induces the multiplication on the cochains $C^{*} X=\left(C_{*} X\right)^{*}$

$$
\begin{equation*}
\mu=\Delta^{*} \psi: C^{*} X \otimes C^{*} X \longrightarrow C^{*} X \tag{2.1}
\end{equation*}
$$

which provides $C^{*} X$ with an algebra structure. Its homology is the cohomology ring of $|X|$.

Now assume that $|X|$ has trivial 1 -skeleton. For the bar construction on ($C^{*} X, \mu$) Eilenberg and Moore (compare [17] and [15]) obtained the following result which is dual to (1.2): There is a natural isomorphism

$$
\begin{equation*}
\phi^{*}: H^{*}\left(\underline{B} C^{*} X\right) \cong H^{*}(\Omega|X|) \tag{2.2}
\end{equation*}
$$

of cohomology groups so that for the loop addition map m on $\Omega|X|$ the diagram

$$
\begin{align*}
H^{*}\left(\underline{B} C^{*} X\right) & \xrightarrow{\Delta^{*}} H^{*}\left(\underline{B} C^{*} X \otimes \underline{B} C^{*} X\right) \\
\mathbb{\|} \mid \mathbb{\phi ^ { * }} & \tag{2.3}\\
H^{*}(\Omega|X|) & \xrightarrow{m^{*}} H^{*}(\Omega|X| \times \Omega|X|)
\end{align*}
$$

commutes. Thus with coefficients in a field, ϕ^{*} is an isomorphism of coalgebras. In (2.3) we suppressed an Eilenberg Zilber map from notation.

We now determine the cup product ring structure by introducing a multiplication on $\underline{B} C^{*} X . \psi$ above yields mappings $\psi:\left(V^{*}\right)^{\otimes n} \rightarrow$ $\left(V^{\otimes n}\right)^{*}$ and

$$
\begin{equation*}
\psi: \underline{B} C^{*} X \longrightarrow\left(\underline{\Omega} C_{*} X\right)^{*} . \tag{2.4}
\end{equation*}
$$

ψ is compatible with the differentials of $\S 0$ and induces isomorphisms in homology. Consider the commutative diagram

$$
\begin{array}{ccc}
s \bar{C}^{*} X & = & \left(s^{-1} \tilde{C}_{*} X\right)^{*} \tag{2.5}\\
\downarrow p^{\prime} & \uparrow i^{\prime *} \\
\underline{B} C^{*} X & \stackrel{\psi}{\longrightarrow} & \left(\Omega C_{*} X\right)^{*} \\
\Delta \downarrow \uparrow \underline{\mu} & \mu^{*} \downarrow \uparrow \underline{\Delta}^{*} \\
\underline{B} C^{*} X \otimes \underline{B} C^{*} X \xrightarrow{\psi}\left(\underline{\Omega} C_{*} X \otimes \underline{\Omega} C_{*} X\right)^{*} \\
\psi \otimes \psi \searrow & /_{\psi} \\
\left(\underline{\Omega} C_{*} X\right)^{*} \otimes\left(\underline{\Omega} C_{*} X\right)^{*}
\end{array}
$$

with p^{1} and i^{1} as in (0.3) and (0.2) and with ψ defined in the same way as ψ in (2.4). ψ and ψ induce isomorphisms in homology. One can check that $\mu^{*} \psi=\psi \Delta$, so that the commutativity of (2.3) follows. We define the multiplication

$$
\begin{equation*}
\underline{\mu}: \underline{B} C^{*} X \otimes \underline{B} C^{*} X \longrightarrow \underline{B} C^{*} X \tag{2.6}
\end{equation*}
$$

to be the unique coalgebra map with component $p^{1} \underline{\mu}=i^{i \#} \underline{\Delta^{*}} \underline{\psi}$. (We make use of the convention that the tensor product $C \otimes C^{\prime}$ of coalgebras is a coalgebra by means of the diagonal $\left(1_{C} \otimes T \otimes 1_{C^{\prime}}\right)\left(\Delta \otimes \Delta^{\prime}\right)$ where T is the switching homomorphism.) We see that $\underline{\Delta}^{*} \psi=\psi \underline{\mu}$. Therefore we get the following result dual to (1.4) from the proof of (1.4).
(2.7) Theorem: Using the isomorphism (2.2) of Eilenberg-Moore the diagram

commutes, where $x([\xi] \otimes[\eta])=[\xi \otimes \eta]$ and where U is the cup product.

Applying the bar construction again we get dually to (1.6).
(2.8) Theorem: If X has trivial 2-skeleton we have a natural isomorphism of cohomology groups

$$
H^{*}\left(\underline{B B} C^{*} X\right) \cong H^{*}(\Omega \Omega|X|)
$$

As in (2.3) the loop addition on $H^{*}(\Omega \Omega|X|)$ is given by the diagonal on $\underline{B B} C^{*} X$. Thus with coefficients in a field, this is an isomorphism of coalgebras.

REFERENCES

[1] J.F. Adams: On the cobar construction. Proc. Nat. Acad. Sci. (USA) 42 (1956) 409-412.
[2] J.F. Adams, and P.J. Hilton: On the chain algebra of a loop space. Comment. Math. Helv. 30 (1956), 305-330.
[3] H.J. BaUES: Geometry of loop spaces and the cobar construction. Memoirs of the AMS 25 (1980) 230 ISSN 0065-9266.
[4] A.K. Bousfield and V.K.A.M. Gugenheim: On PL de Rham theory and rational homotopy type. Memoirs of the AMS 179 (1976).
[5] A. Dold and R. Lashof: Principal quasifibrings and fiber homotopy equivalence of bundles. Ill. J. Math. 3 (1959), 285-305.
[6] B. Drachman: A diagonal map for the cobar construction. Bol. Soc. Mat. Mexicana (2) 12 (1967) 81-91.
[7] D. Husemoller, J.C. Moore and J. Stasheff: Differential homological algebra and homogeneous spaces. J. pure appl. Algebra 5 (1974) 113-185.
[8] J.R. Milgram: The bar construction and abelian H-spaces. Ill. J. Math. 11 (1967) 242-250.
[9] J.R. Milgram: Iterated loop spaces. Ann. of Math. 84 (1966) 386-403.
[10] J. Milnor and J.C. Moore: On the structure of Hopf algebras. Ann. Math. 81 (1965) 211-264.
[11] J.C. Moore: Differential homological algebra. Actes du Congr. Intern. des Mathématiciens (1970) 335-336.
[12] H.J. Munkholm: The Eilenberg-Moore spectral sequence and strongly homotopy multiplicative maps. J. pure and appl. Algebra 5 (1974) 1-50.
[13] L. Smith: Homological algebra and the Eilenberg-Moore spectral sequence. Trans. of AMS 129 (1967) 58-93.
(Oblatum 26-VI-1980 \& 12-XI-1980)
Math. Institut und
Sonderforschungsbereich 40
der Universität Bonn 53 Bonn
Wegelerstr. 10

