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CORRECTION TO THE PAPER

“COMPACT FIBERINGS OF HOMOGENEOUS
SPACES. I”

Reinhard Schultz

It was pointed out by R. Stong that the methods of [I] do not apply
to the oriented Grassmann manifolds G;1(R) and G1,,(R), and in fact
G$2(R) fibers over S with fiber CP?; there is an analogous fibering of
the unoriented Grassmann manifold Gg,(R) over RP® with the same
fiber. The fallacy in [I] is that condition (6.6) requires n# 3,5 (com-
pare the statement of Bertrand’s Hypothesis in [I,§5]). Upon
reflection it is apparent that these fiberings are consistent with the
principal conjecture in [I]; specifically, they come from the fact that
Spin; acts transitively on the Stiefel manifold Vg,(R) via the spinor
representation Spin;— SO; (in fact, the induced action on Vi3(R) is
also transitive). Stong has indicated a more direct description of this
fibering.

In contrast, the manifold G1,,(R) is indeed connectedwise prime,
and we shall verify this here. We adopt notation from [I] as needed.
The proof of [I, Theorem 6.1] implies that the question reduces to
considering compact fiberings F - G},,(R)—> B with B a 1-connected
Z [67"] cohomology 10-sphere. The idea is to construct an associated
compact fibering of Vi,,(R) over B. Specifically, if F is the principal
SO,-bundle over F classified by the composite F — G1,2(R)— BSO,,
then the sequence

6 F— Viya(R)— B
is exact.
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420 Reinhard Schultz [2]

The first step in providing G1,2(R) is connectedwise prime is to
show that B is actually a Zs-homology sphere. Given this, it is not
difficult to modify the argument for n = 5.

The analysis of B begins with the observation that the boundary
homomorphism d;: m3(B)— m(F) is zero by a result of S. Weingram
[55, 83). But 95 is an isomorphism since V,,(R) is highly connected,
and therefore B and F are 2- and 3-connected respectively (by [I, 4.2]
we already knew that they were 1- and 2-connected).

To shorten notation, set V; = H'(F;Z;) and W, = H/(B;Z). Then
V.® W, =E} in the Z; Serre spectral sequence for (1). Our con-
nectivity assumptions and Poincaré duality yield the following in-
formation:

Wo= Vo= W=V =12,
Vi=V,=Ve=Vy,=0,
Wi=W,=W;=W,=W;=W,=0,
Vi= Vg, V=V, Vi= Vs,

W, = W, dim Ws=0(2).

Thus there are only five unknown dimensions. From the connectivity
conditions and the Serre spectral sequence we have V;=W,, V,=
Ws, Vs = W,. Further inspection of the Serre spectral sequence shows
Ve=V3;® W, and V,=(V: R W) P (V, P W,); the latter requires an
observation that d3* =0 by the multiplicative properties of the Serre
spectral sequence. If we combine all this information, we obtain the
following equation:

This has an integral solution only if 0 = dim V,=dim Ws. But B is a
rational homology sphere. Therefore, if W, were the first nonzero Z;
cohomology group in positive degree (we know nothing lower is),
Bockstein considerations would imply Ws# 0 also. This means 0 =
Wi= Ws= W, or B is a Z; (hence Z;) homology 10-sphere. From
our formulas it also follows that F is a Zs homology 11-sphere.

This brings us to the final step. Let S > E’'—> S be the localiza-
tion of (1) at 3. It is immediate from obstruction theory that this
fibration has a cross section. Hence the localized fibration F3—
G 12(R)3—~Bg, also has a cross section. If one uses this 3-local cross
section in place of the transfer and sets p = 3, then the argument in
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the last paragraph of the proof of [I, 6.1] goes through word for word.

|
I am grateful to R. Stong for pointing out my mistake.
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