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1. Introduction

In this article we continue our study of embeddings begun in [8, 9].
An embedding i : Y- X of a compact complex manifold Y in a
complex manifold X is pluricanonical if the normal bundle to Y in X
is some (kth) symmetric power of the tangent bundle to Y. We are

mainly interested in canonical embeddings (k = 1); in particular, the
diagonal embedding A of Y in Y x Y and the embedding ZT as the
zero section of the tangent bundle. In section 2 we recall the

machinery of finite equivalence of embeddings, and the Nirenberg-
Spencer [9] obstruction 03B4(03B1k) to extending a kth order equivalence 03B1k
to an akll- A and zT are naturally first order equivalent; this

equivalence extends to a second order equivalence if and only if Y
admits a holomorphic connection. In this case A and zT are actually
analytically equivalent in the sense that they have biholomorphic
neighborhoods carrying 0394 to zT.
We say that Y is an HNR in X if there is a holomorphic fibration

of a neighborhood of Y in X transversal to Y. Suppose Y is of
codimension 1 in X. In section 3 we construct a model, up to second
order equivalence, for all such embeddings as follows. Let b E

H1(Y, N-1) be the obstruction to extending the natural first order

equivalence of i with .zN. b determines a plane-bundle extension V of
N:

and P(kJ - Y is a P’-bundle with a distinguished section 03C3; i is

second order equivalent to u. We show further that for C a curve and
0394 the diagonal embedding, N-’ = K and b is the Chern class of C, and

0010-437X181 /08219-21$00.20/0



220

0394 is actually analytically equivalent to 03C3 in XK(b). This is completely
transcendental if C is of genus more than 1. In this case 0394 and u can

be blown down and we show (in section 5) that the blown-down C x C
is an algebraic variety, whereas the blown-down Xk(b) is not. In

section 5 we also show that the resulting singular point has a Goren-
stein structure ring.

In section 3 we consider also the diagonal embedding A, of C in the
symmetric product C(2). The normal bundle is (TC)2 but A, is not even
first order equivalent with ( TC)2, for A, is not HNR.

In section 4 we describe all pluricanonical embeddings of a curve of
genus g &#x3E; 1. If the normal bundle is ( TC)k, k &#x3E; 2, there is only z(TC)k.
If the normal bundle is (TC)2, there are only Z(TC)2 and As. For
canonical embeddings, the space e of embeddings (up to analytic
equivalent) is a fiber space over P(H1(K)) U JOI; the fiber over 0 is a
P1, and other fibers consist in just two points. This construction is
completely local along C; we do not know if any of these surfaces
can be made algebraic (except for C x C and TC).
Some of this work was done while the second author was on

sabbatical leave from the University of Utah at the University of
Washington; we wish to acknowledge the generosity of one institution
and the hospitality of the other. We have benefited from several
useful conversations with Harry Corson in Seattle and Ron Donagi in
Salt Lake City.

2. Summary of general results

In this section we shall summarize some results in the general
theory of equivalence of embedding (see also [9]), which we shall
need in the sequel. In this discussion, Y is a submanifold of the
complex manifold X, and 9y is the sheaf of ideals of functions

vanishing on Y.

DEFINITION 2.1: YO(k) = XO/(k+1)Y is the structure sheaf of the kth
(infinitesimal) neighborhood of Y in X.

is the structure sheaf of the f ormal neighborhood  of Y in X.

DEFINITION 2.2: Let i : Y ~ X, 1’:Y-X’ be embeddings. A
kth order equivalence Iformal, actual} of these embeddings is a

bimorphism of ringed spaces 0 : (Y, YO(k) ~ (Y, YO’(k))



221

{aY, yd) (Y, yé’), (Y, xt |Y) ~ ( Y, x6 Y)} such that ~ 03BFi = i’. (Hère ;
xt Y is the topological restriction of xC to Y.)

It is easily verified that an "actual" equivalence is induced by a
biholomorphic map 0 of a neighborhood of Y in X’ such that § o 1 =
i’. We shall refer to a kth (formal, actual) equivalence by the symbol
kEQ(FEQ, AEQ).

DEFINITION 2.3: N* = FY/2Y~ YO is the conormal sheaf of the

embedding i : Y - X

The injection di: TY- TX induces the exact sequence

where, by definition, N is the normal bundle to Y in X. Then N* is
the sheaf of sections of the dual N* to N.

In [11] Spencer and Nirenberg introduced the basic machinery to
study equivalence of embeddings; the following theorem summarizes
their results which we need.

THEOREM 2.4: Let i : Y ~ X, i : Y- X’ be two embeddings with
the same normal bundle, N. Suppose ak is a kEO of these embed-
dings. The obstruction 8(ak) to extending ak to a (k + 1)EQ lies in

where Sk(N*) is the kth symmetric product of N* (the bundle of
homogeneous forms on N of degree k).

If there is a ko such that these groups all vanish for k ko, then any
koEQ can be extended to an FEQ. This will be the case when Y is a
hypersurface in X and thus N is a line bundle, if N  0, or if N &#x3E; 0
and dim Y ? 2. In these cases it has been proved [3, 4] that the FEQ
can be taken to be an actual (convergent) equivalence. In the case
where Y is a curve and N &#x3E; 0 there is no such finiteness of

equivalences theorem, but this seems to be because X is not neces-
sarily algebraic. We shall elaborate on this situation in another article
"Embeddings of curves in ruled surfaces".

In [9] we made some observations which are necessary to the
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present work. Let i : Y~X have the normal bundle sequence

and let b E Hl(Hom(N, TY) = H’(TY ~ N*) be the obstruction to
splitting this sequence.

PROPOSITION 2.5: (i) b = 8(ao) (as defined in 2.4), where ao is the

OEQ of i and the embedding .zN of Y as the zero section of the normal
bundle N.

(ii) Two embeddings i : Y ~ X, i : Y ~ X’ are 1 EQ if and only if
they have the same normal bundle sequence (i. e., the classes b, b’ are
cohomologous).
In this paper we are mainly concerned with comparing two parti-

cular embeddings: the diagonal embedding 4: Y ~ Y x Y, and the
embedding ,zT : Y ~ TY as the zero section of the tangent bundle.
For a more general context to which our results will apply we make
this definition.

DEFINITION 2.6: An embedding i : Y - X is pluricanonical if the
normal bundle is S(k)TY for some k &#x3E; 0 (if k = 1, we call the embed-
ding canonical).

In [9] we obtained the following result.

THEOREM 2.7: There is a canonical 1EQ al of ZT and A. The

obstruction 8(al) lies in H’(Y, TY~S2(T*)), and is Atiyah’s [2]
obstruction to the existence of a holomorphic affine connection on Y.

The following is an elaboration of this result:

COROLLARY 2.8: Let Y be a compact complex manifold.
(i) a, extends to a 2EQ if and only if Y has a holomorphic affine

connection.

(ii) if al extends to a 2EQ, it extends to an AEQ.
(iii) if Y is a curve, a, extends if and only if Y has genus 1.

(iv) if dim Y = 2 and al extends, Yhas an affine structure (see [7] fora
classification of such surfaces).

(v) if Y is Kahler and 03B11 extends, then ci (TY) = 0 for all i &#x3E; 0, where ci
is the ith Chern class ; if Y is not Kahler, ci(TY) = 0 for i ~ (dim Y)/2.

REMARKS: 1. Except in case dim Y = 1 we do not know if any 2EQ
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of zT with 0394 implies that al extends. In particular we do not know (if
dim Y &#x3E; 1) if a 2EQ (or even an AEQ) of ZT with 0394 implies the
existence of an affine connection on Y.

2. If Y is an HNR in X (i.e., there is a holomorphic contraction of a
neighborhood of Y onto X), and if X has a 2EQ extending ai, then
also Y has a 2EQ extending a,. Thus if X contains a rational curve
which is an HNR, a cannot extend on X.

PROOF: (i) is a restatement of 2.7. So if ai 1 extends, there is a

holomorphic affine connection, with holomorphic Christoffel symbols
r;k. The "geodesics" of this connection are then solutions of the

holomorphic differential equation

where t is a holomorphic parameter. Let 03B3(y, 03BE, t) be the solution of

(*) with 03B3(y, 03BE, 0) = y, and -d-1 (y, 03BE, 0) = 03BE ~ 7, F. Let exp(e) = 03B3(y, 03BE, 1),
where e is in some small ball around 0 E TyY. Now we define a map 0
of a neighborhood of the zero section of TY to a neighborhood of
0394 ~ Yx Y by

The map 0 is holomorphic because the solutions of (*) depend
holomorphically on the initial conditions. We wish to compute the
derivative, Do |(y,0). It is clear that this matrix has the form

To compute A we notice that

Using this it is easy to check that A = I. This proves that 0 is a

biholomorphic map on a neighborhood of the zero section of TY This
proves (ii) and the proofs of (iii), (iv), and (v) can be found in [7] and
[9].
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3. The diagonal embeddings.

In this section we shall show that for curves C the diagonal
embedding is analytically equivalent to a specific embedding as a
section of a ruled surface over C, although these embeddings are
algebraically quite different. In order to do that we need to refer
explicitly to Atiyah’s [1] construction of ruled surfaces.

CONSTRUCTION 3.1: Let Y be a compact complex manifold, and
L ~ Y a line bundle over Y. Choose a coordinate covering {Ui} for L
with the transition functions {gij E H0(Ui fl Uj, 0*)I. The isomorphism
class of L is determined by the class {gij} ~ H1( Y, 0*). Let b E
H1( Y, L), and represent b on this covering by bij E HO( Vi fl Uj, 0)
(the isomorphism L|Ui~Uj~O|Ui~Uj being used here is that

given by the second index). We construct the affine line bundle AL(b)
as follows:

where E is the equivalence relation: (zi, 03BEi)E(zj, 03BEj) precisely when
Zi = Zj E Ui ~ Uj and

The cocycle conditions on {gij}, {bij} guarantee that this defines an
affine fiber space over Y (and conversely [1]). Now, we can con-
sistently compactify each fiber by adding the point at infinity, obtain-
ing a P’-bundle XL(b) over Y with a distinguished section 03C3~.

Another way to view this construction is as follows. Given the data

{gij}, {bij} we find the relations

are transition functions for a plane bundle V over Y ((03B6i, ~i) are
coordinates for V in U). Then XL(b) is precisely the projectivized
bundle P(V), with ei = Ci/i7j the local inhomogeneous coordinate. The
transition functions (3.2) describe the exact sequence
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with b E H1(Hom(O, L)) the class defining this extension. The infinite
section is given by the equation ~i = 0 and is just P(L) ~ P( V). An

easy computation shows the normal bundle to this embedding to be
L-1 (and since 03C3~ is an HNR, the normal bundle sequence splits).
Now, let i : Y ~ X be an HNR embedding of Y as a hypersurface

with normal bundle N. Then the normal bundle sequence splits.
TX 1, = TY 0 N, and i has a natural 1BQ ai with the zero section zN
of N. The obstruction to extending ai to a 2EQ is

Since i is an HNR, the first term vanishes (see [9]), and 8(al) = b E
H1(y, N-1).

PROPOSITION 3.3: In the above situation, i : Y ~ X is 2EQ with 03C3~

in XN-1(b).

PROOF: Let 77- : U ~ y be the holomorphic contraction. Cover the
image of Y in X with local coordinate neighborhood Ui, and let zi be
a coordinate for Y n Ui, and w; a defining function for Y ~ Ui : Y n
Ui = {wi = 0}. We may assume that Ui=03C0-1(Y~Ui)~U, and
extends zi to U¡ by zi - ir. Then (zi, w;) are coordinates in U¡ (shrinking U
if necessary, and we have transition functions of the form

The class b is represented by fhijl. AN-1(b) has coordinates fzi, eil with
transition functions

At 03C3~ in XN-1(b) we introduce the local coordinate 7q; = eî’. Tran-
sition functions along 03C3~ are
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or

The correspondence wi=~i is consistent (by (2.4) and (3.5)) up to
second order under coordinate changes so defines a 2EQ between i

and 03C3~ in XN-1(b).
For the diagonal embedding 0394 of a curve C the equivalence of

Proposition 3.3 can be made an analytic equivalence. As we have
seen, the obstruction S(aI) to extending the natural lEQ of 0394 and ZT
to a 2EQ is the Chern class c E H1(C, K) (where K is the canonical
bundle). We shall write XK for XK(c).

THEOREM 3.6: For any curve C the diagonal embedding
A : C ~ C  C is analytically equivalent to the infinite section 03C3~ of
XK.

PROOF: Every Riemann surface has a projective structure (in fact
many, see [6]). By that we mean that there is a covering {Ui} of C by
coordinate neighborhoods so that the transition functions are given by
projective transformation:

where aij, bij, cij, dij are constants and aijdij - b;;c;; = 1. This gives us a
neighborhood of à C C x C covered by the f Ui x lÀ) with coordinates
(zi, wi) and transition functions (3.7) and

Let t; = wi - .z; so â fl (Ui x lÀ) = {ti = 0}, and take (z;, t;) as local
coordinates on Ui x Ui. We compute the new transition functions to
be (3.7) and

where bij=f"ij(zj)/2f’ij(zj) is a representative of the class 1Tic(TC) =
- 1Tic(K) E H1(K) (see [9]).
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Now 03C3~ in XK has a coordinate cover {Wi} with coordinates (Zi,~j)
and transition functions (3.7) and

where {cij} represents c(K). Comparing (3.9) and (3.10) we see that
the functions ~i: Ui x Ui - W defined by

agree on the overlaps and define a holomorphic map of a neighbor-
hood of à with a neighborhood of 03C3~.

For g &#x3E; 0 this equivalence is transcendental: it does not extend to a
meromorphic map between C x C and XK. In fact:

PROPOSITION 3.11: There is no birational map between C x C and

XK.

PROOF: If XK and C x C were birationally equivalent, C x C would
contain a smooth rational curve r. Let p : C x C ~ C be the pro-
jection on the first factor. If C is not rational, then r cannot be
contained in a fiber of p. But then p ) r makes r a branched cover of
C, which is impossible since C is of positive genus.

REMARKS: 1. Of course, in case g = 1, XK = C X pl, and the

diagonal map C ~ C x C is analytically equivalent to a constant

section of XK.
2. In case g = 0, we have that XK and Pl x P1 coincide. The

equivalence defined in Theorem 3.6 can be easily seen to extend to a
global biholomorphic map.

An argument can be made for the thinking of XK as a "better"
tangent bundle for a curve C than TC. There is the following result of
Atiyah [1], which, together with 3.6, justifies this. We give a new
proof for completeness.

Let f : C ~ Pn be an embedding. For p E C, denote by df(p) the
line in P" tangent to f (C) at f (p). Then df is a map of C into the
Grassmanian G(n + 1, 2) of lines in P". Let B represent the tautologi-
cal projective bundle on G(n + 1, 2) : for x E G(n + 1, 2), Bx is the line
x. Then df *(B) is a projective bundle over C.
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PROPOSITION 3.12: For any embedding f : C ~ p n, df*(B) ~ XK.

PROOF: The map f is given by certain sections oo, ..., un of an

ample line bundle L. Cover C with coordinate neighborhoods {Ua},
local coordinates z03B1, and so that (Ti is realized by the function 03BE03B1i in

Ua. Let {g03B103B2} be the transition functions for L. Then

Associate to each p E C the plane Pp in Cn+l spanned by

so long as p E Ua. Since

the plane Pp is well defined, and P = UPp defines a plane bundle on C
with transition matrices

It is easily checked that P(P) = df *(B). Now by (3.13) we obtain the
exact sequence

and

defines the class in H1(C, Hom(L-’o 0, L-’) obstructing the splitting
of (3.14). Finally Hom(L-1~0398, L-1) = K, and (3.15) represents the
Chern class of L-’. Since L is ample, its Chern class is non-zero, and
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3.14 does not split, nor does (3.14) tensored with L:

Thus P(P @ L) = XK. But P(P ~ L) = P(P) = df*(B).

REMARK: The proposition is easily seen to fail in higher dimen-
sions. If X is a projective variety with tangent bundle 0, and
c = H1(03A91) is the Chern class of ample bundle L, then X03A91(c) is

df *(B) (defined analogously as above), where f : X - pn is the map

given by the sections of L.

We conclude with a description of the diagonal in the symmetric
product, which will be needed in the following section. Introduce an
equivalence relation E on C x C : (x, y)E(y, x). C(2) = C x CI E is the
symmetric product of C with itself. Let A, be the image of the
diagonal. Since the map C x C ~ C(2) is 2 : 1, branched along A, C(2) is
an analytic variety which is nonsingular off A,. But it is also non-

singular along A, and the diagonal map C ~ 0394s is an embedding, as
we can see by introducing proper coordinates. Let U be a coordinate
neighborhood in C, with coordinate z. Then U x U is a coordinate

neighborhood in C  C, with coordinates z,, z2. Then we can use as
coordinates on U, = U x UIE:

and OS is given in Us as TJ = 0.

THEOREM 3.13: The normal bundle of A, in C(’) is K-’, where K is
the canonical bundle of C. The obstruction to finding a IEQ between
OS and the zero section of K-2 is the Chern class of C.

In particular if g ~ 1, OS and z are not first order equivalent, and if
g = 1, they are in fact analytically equivalent embeddings.

We prove the theorem by exhibiting the normal bundle sequence.

PROOF: Let {U03B1} be a coordinate cover of C, with coordinates za
and coordinate transformations za = f03B103B2(z03B2). Then Ua(s) = Ua x Ual E
form a coordinate cover of a neighborhood of 4s with coordinates C.
TJa defined as in (3.12). The coordinate transformation in Ua(s) n U03B2(s)
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can be traced. We have

from which we obtain

and finally

The transition matrices for the tangent bundle of C(2) along A, are

These matrices tell us how the normal bundle sequence

goes: the transition function for N is the lower right entry, which is
the transition function for K-2, and the extension (3.17) is defined by
the class in H1(C, Hom(K-2, K-1)) = H’(K) given by the quotients of
the entries in the first row:

Comparing with [9], we see that this is the Chern class of C. Thus A,
and Z are first order equivalent if and only if (3.16) splits, which
happens if and only if the Chern class is zero.

If g = 1, K is trivial, and the embedding 0394s ~ C(2) is analytically
trivial. Cover C with affine coordinates {Z03B1 in U03B1} with transition
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function z03B1=z03B2+c03B103B2. Then (using (3.14)) the transition function in

U03B1(s) ~ U03B2(s) are

so the map 0 , C x f w E C, |w|  e - C(2) given by 03B603B1 = z03B1, ~03B1 = w is

an isomorphism taking C x {0} to A,.

REMARK: Except in the case g = 1, A, is not an HNR, since the
normal bundle sequence doesn’t split.

4. Pluricanonical embeddings

In this section we shall describe all pluricanonical embeddings of a
curve of genus greater than 1. In this case the normal bundle is

negative, and Grauert’s theorem applies.

THEOREM [3] 4.1: Let i : Y ~ X be an embedding of a compact
manifold Y in a manifold X, of codimension 1, with negative normal
bundle N. Let ko &#x3E; 0 be such that Hk( Y, TX |Y 0 N-v) = 0 for all
k &#x3E; ko. Then any koEQ of i with another embedding i’ : Y ~ X’
extends to an actual equivalence.

Thus, for such embeddings, i is analytically determined by the koth
neighborhood of Y in X. For Y a curve, the space of embeddings is
parametrized by the set of inequivalent koth neighborhoods, since an
embedding can be trivialized on a 2-set open covering and thus there is
no cocycle condition to extending a koth neighborhood to an actual
neighborhood (see [9], or below for details). Now, for curves of genus
g &#x3E; 1, we can estimate ko in terms of the degree of N.

COROLLARY 4.2: Let C be a curve of genus g &#x3E; 1, and N ~ C a line
bundle of degree - n, n &#x3E; 0. Let ko be the integer of the theorem

(i) if n  2g - 2, k0 ~ [4g - 4 n].
(ii) if n = 2g - 2, ko = 1 unless N2 = TC2, then ko = 2
(iii) if 2g - 2  n  4g - 4, ko = 1
(iv) if n = 4g - 4, ko = 0 unless N = (TC)2, then ko = 1
(v) if n &#x3E; 4g - 4, ko = 0; i.e., the only embedding of C in a surface with

normal bundle N is (up to analytic equivalence) the zero section of N.
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PROOF: Let i : C ~ S be an embedding with normal bundle N.
From the exact sequence

we obtain

so the middle term vanishes if the outside terms do. This is guaran-
teed if these bundles have degree greater than 2g - 2, so we have
vanishing of all kth order obstructions if

or

(i) if n  2g - 2 the first inequality dominates, so obstructions
vanish for all k greater than

(iii) if 2g - 2  n  4g - 4, both inequalities say that obstructions
vanish for k = 2. Thus ko = 1.

(v) if n &#x3E; 4g - 4, both inequalities say that obstructions vanish for
all k &#x3E; 0, so k0 = 0.

(ii) if n = 2g - 2, both TC~N-k , and N-k+1 have degree (k -1)
(2g - g) so obstructions vanish for k2. Thus we may take ko = 2.
However, if N2~(TC)2 then TC~N-2 and N-’ are bundles of

degree 2g - 2 different from K, so again H1 vanishes and we may take
ko = 1.

(iv) Here the two bundles have degree (2k - 1)(2g - 2), 2(k - 1)(2g - 2)
respectively, so if k &#x3E; 1, H’ vanishes, and thus we may take

ko = 1. However, to reduce this to ko = 0 we need only check the first
bundle (recall theorem 2.4) and if N ~ ( TC)2 this bundle is of degree
2g - 2 but different from K, so H’ vanishes and we may take ko = 0.

COROLLARY 4.3: Let C be a curve of genus g &#x3E; 1. The only pluri-
canonical embeddings (up to analytic equivalence) are the following:
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(i) the zero section of (TC)v(v ~ 2)
(ii) the diagonal of the symmetric product C(2). Here the normal

bundle is (TC)2.

Finally, we give a prescription for parametrizing all canonical

embeddings (up to analytic equivalence).
Let C be a curve of genus g &#x3E; 1. Cover C with coordinate neigh-

borhoods (ui, Zi) so thatui fl ui ~ Uk = ~ if i, j, k are all distinct (we
can find such covers so long as we allow the Ui to be multiply
connected. Let

be the transition function of this covering.
Now suppose i : C ~ S be a canonical embedding with normal

bundle sequence

Let b E H1(C, Hom(TC, TC)) = H1(C, O) describe the extension (4.4).
Represent b in a covering by the cocycle bij ~ (J( Cf; n Uj). We con-
struct a surf ace Sb as follows: for Ai a small disc with coordinate w;,
Sb is covered by lfi x ài and has transition functions

Since there are no triple intersections there is no consistency con-
dition to check and Sb is a well-defined surface. Define ib : C~Sb by
ib|Ui(zi) = (Zi, 0).

PROPOSITION 4.5: 1 : C ~ S is 1 EQ t0 ib.

The proof is as in [9].
Now ib is 1 EQ to ib, if and only if b = tb’ for some t ~ 0. Thus, up

to first order equivalences embeddings of C are parametrized by
PHI(X, 0) U foi.
Let a, be the first order equivalence of proposition 4.5 and now

compute the obstruction to extending it to a 2EQ. From
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we obtain the exact sequence

PROPOSITION 4.8: If b = 0, i.e., (4.4) splits, then dim H1(Ts~ K2) =
2. Otherwise dim H l(Ts @ K2) = 1.

PROOF: Of course, if (4.4) splits, the first map in (4.7) is the zero
map and thus dim H1(TS 0 K2) = 2. What we have to show is this:

LEMMA 4.9: Let

be an exact sequence where V is a plane bundle on a curve C and K the
canonical bundle. (4.10) splits if and only if the coboundary map
8 : H0(K) ~ H 1(K) is the zero map.

PROOF: Let b ~ H1(Hom(K, K)) = H1(O) be the class of the
extension (4.10). We’ll show that the coboundary map coincides with
the natural map

with first term b. But by Serre duality (4.11) is non-degenerate, so if
the coboundary map is zero, b = 0.
To see this, let {bij; E O(Ui fl Uj)} represent the class b relative to a

suitable covering f Uil. A Coo splitting of (4.10) is given by

and 0 = {- doil defines the Dobleault representative of b. Let w E
Ho(K) and w its lift according to the COO splitting. Locally, if w is given by
w;, then w is given by
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and its coboundary is aw, given locally by

Thus 8(w) = 0 A w, where 0 is the Dolbeault representative of b; but
this is just the duality of Serre.
Now the space of second order extensions of ib is PH1(TS~K2) U

{0}. For any c E H1(TS @ K2) represent it on the cover (Ui, Zi) by the
vector

and modify the transition functions (4.5) to read

giving us a surface Sc for c E H’(Ts @ K2). It is easy to check that
two such extensions (given by C, C’) of a are equivalent if and only
if c = tc’, t ~ 0, ic : c ~ s, is defined as before.
By the proposition, for b ~ 0 there are only two distinct embeddings

correspondings to ib and ib, given by the nonzero class in

H’(TS ~ K2). For b = 0 we obtain again the zero section embedding
io, and am embedding ip as p runs over P’. This P’ has a distinguished
point corresponding to the diagonal embedding A. This is the only
HNR embedding of C besides io. In summary

THEOREM 4.13: Let i : C ~ S be a canonical embedding. If the
normal bundle sequence splits the embedding is AEQ to one of the ip,
p ~ P1 or to zT. If b ~ 0 is the obstruction class to splitting, i is AEQ to
one of ib, ib’.

REMARKS: 1. Notice that Theorem 4.13 includes Theorem 3.6 as a

special case; we felt that the proof in section 3 was worth exhibiting
because of its directness.

2. For each embedding in the theorem we have constructed only
locally the surface S. We have global constructions, so that S is

algebraic in case of zT or A. We do not know if any of the other

embeddings can be realized algebraically.



236

3. In another paper [10], we shali find that the only algebraic
pluricanonical embeddings of P’ are the zero sections of

P(O(2n) (D 0) (in fact the only algebraic embeddings of pl are as the
zero section of PO(n) Q O), or the linear or quadratic embeddings in
p2). Canonical embeddings of elliptic curves remain elusive: since the
canonical bundle is trivial there seems to be no way to get a grip.

5. Singularities obtained by blowing down.

In this section we continue the study of the particular embeddings
0 and 03C3~ in C x C and XK respectively for C a curve of genus g &#x3E; 1.

In both cases C is negatively embedded, so can be blown down. More
precisely, let S/1, Su be the topological spaces obtained by identifying
C to a point, and 03C00394 : C  C ~ S0394, 03C003C3 : XK~S03C3 the natural pro-

jections. Then, by Grauert’s theorem on negative embeddings [3], if
we endow S!1(Su) with the structure sheaf R003C0(OC C)(R003C0)(OXK)), then
S0394(S03C3) becomes a normal analytic space with one singular point
p0394(p03C3). By Theorem 3.6 these singular points are analytically
equivalent, but not algebraically equivalent for, as we shall see S0394 is
algebraic whereas S, is not. The proof of the following result was
suggested to us by Ron Donagi.

THEOREM 5.1: S0394 is algebraic.

PROOF: Suppose first that C is not hyperelliptic. Let J be the
Jacobian of C; we may view J as the set of line bundles on C of

degree 0. J is an abelian variety of dimension g; in particular J is
algebraic. Consider the holomorphic map 0 : C x C ~ J defined by

(by [D] we mean the line bundle of the divisor D). Suppose
~(p1. ql) = ~(p2, q2). Then by Abel’s theorem p1 - q1 ~ P2 - q2, or pl +
q2 "-’ P2 + qI. If (pl, q2), (P2, ql) are different point sets, this gives a
meromorphic function with two zeros and two poles and thus C is
hyperelliptic, which is the case being excluded. Thus, either Pl = p2,
q2 = q, or p1 = p2 and ql = q2. This says precisely that 0 is a proper
modification blowing 0394 down to a point, and thus defines a holomor-
phic homeomorphism of S0394 with the variety ~(C x C) in J. Thus

§(C x C) is algebraic and S0394 is its normalization, so S0394 is algebraic as
well.
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In the hyperelliptic case we define 0 again as above. Letting
j : C ~ C be the hyperelliptic involution, we find that ~(p1, ql) =
~(p2, q2) if and only if one of these holds: (a) pl = q, and P2 = q2, (b)
p1 = P2 and qi = q2, (c) q2 = j(PI), P2 = j(qi).

Let r be the graph in C x C of j. For (p1, q1) ~ 0394 ~ 0393~(p1, q1) =
~(p2, q2) if and only if P2 = j(q,), q2 = j(pl). Thus ~ is 2 : 1 off A U r.
On 0393 - 0394, ~ is easily seen to be 1 : 1, and ~(0394) = 0. Thus 0 descends
to a holomorphic map of Sà to ~(C x C) which is 2 : 1 of f03C00394(0393) and
branched along 1Tâ(f). By [13], again S0394 is seen to be algebraic.

The above argument generalizes easily to the case of the graph of a
map.

COROLLARY 5.2: Let f : C ~ C’ be a holomorphic map with C’ of
genus at least 2. Then the graph F of f is exceptional and C x C’IF is
algebraic.

PROOF: Let d be the degree of f. Suppose first that C’ is not

hyperelliptic. Let J be the Jacobian of C’ and consider the map
q, : C x C" ~ J, ~(03B2, q) = [f(p) - q]. If ~(p, q) = ~(p’, q’) we must have
(as above) tf (p), q’} = {f(p’), q} as point sets. If f (p ) = f (p’), q = q’, then
p, p’ are in a fiber of f. If f (p) = q, f(p’) = q’, then (p, q), (p’, q’) are in
r. Thus 0 blows down r, and the induced map : C x C’/0393 ~ J is a d
sheeted branched cover of ~(C x C’), which is algebraic, and thus
C x C’/r is also algebraic. The case where C’ is .hyperelliptic is again
as in theorem 5.1; this time : C x C’lr - J is a 2d sheeted branched
cover, so again C x C’lr is algebraic.

PROPOSITION 5.3: If C is non-hyperelliptic, the variety V =

~(C x C) of 5.1 is the Grauert blowdown, i.e., V is normal.

PROOF: We work near ~(0394) C J, and we can represent .0 near A by
~(p, q) = (f: 001, ..., fP 03C9g) where {03C91, ..., 03C9g} gives a basis for H°(K).
Let fj = qp03C9j, and suppose 03C9j = hj03B1(z03B1) dZa in local coordinates.

Changing product coordinates (03B603B1, w03B1) on Ua x Ua C C x C to

(CC, 03BE03B1) = (03B603B1, w03B1 - (a) we get hj03B1(z03B1) = hj03B1(03B603B1) + h’j03B1(03B603B1)03BE03B1 + .... 
Then
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Now we use 5.7 of [9]. By the above expansion 03C3(fj) = 03C9j E

HO(â, N-1) = HO(à, K). By Noether’s theorem {03C91,..., 03C9g} generate
03A3l~1 HO(à, Kl). Then by 5.7 of [9], V = ~(C x C) is the Grauert

blow-down, and hence V is normal.

Now, we verify that Su is not algebraic (this example is due to
Grauert [3]). More generally,

THEOREM 5.4: Let Y be a compact complex manifold, L ~ Y a
positive line bundle, and b E H1( Y, L), b ~ 0. Then the infinite section
03C3~ of XL(b) is negatively embedded, and the blowdown Xu of 03C3~ is not
an algebraic variety.

PROOF: It is easy to verify that if u is a section of AL(b) then the
expression of u in local coordination gives a cochain whose coboun-
dary is b. Thus, since b ~ 0, AL(b ) can have no sections.
On the other hand, if Xu is algebraic, there is a hypersurface H

which does not contain the blowdown point 03C3~. The pullback of H is
a hypersurface in AL(b ) and 03C0|H : H ~ Y is a proper map with
discrete level sets, so is a branched d-sheeted cover for some d. Now
we define a section A : Y - AL(b) by

Since the fibers of AL(b ) have an affine structure, s is well defined
over regular points of ir H. However, in local coordinates at other
points s is a bounded C-valued function, so extends analytically and
defines a section of AL(b), contradicting that b ~ 0. Thus Xu is not

algebraic.

PROPOSITION 5.5: The singular points of Su and SA are Gorenstein.

PROOF: On XK, near 03C3~ we use the coordinates (z;, nj) described in
(3.5). Then consider the meromorphic two form 03C9 defined locally by

Using 3.5 one easily checks that w is globally defined on XK, has no
zeros, and has CK as a polar locus of order 2. (Incidentally, this shows
that the canonical bundle of XK is [ - 2CK],) This proves that Su is
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Gorenstein. By the analytic equivalence of the two singularities S0394 is
also Gorenstein. (However the form 03C9 does not extend to a global
meromorphic form on S.)

BIBLIOGRAPHY

[1] M.F. ATIYAH, Complex fibre bundles and ruled surfaces, Proc. London Math.
Soc. (3) 5 (1955), 407-434.

[2] M.F. AYITAH: Complex analytic connections in fibre bundles, Trans Amer. Math.
Soc., 85 (1957), 181-207.

[3] A. GRAUERT: Uber Modifikationen und exzeptionel analytische menger, Math.
Ann. 146 (1962), 331-368.

[4] P. GRIFFITHS: The Extension Problem in Complex Analysis II; Embeddings with
positive normal bundle, Amer. J. Math. 88 (1966), 366-446.

[5] P. GRIFFITHS and J. HARRIS: Principles of algebraic geometry, Wiley, New York,
1978.

[6] R. GUNNING: Lectures on Riemann surfaces, Princeton University Press, Prin-
ceton, 1966.

[7] M. INOUE, S. KOBAYSHI, and T. OCHIARI: Holomorphic affine connections on
compact surfaces, J. Fac. Sci. Univ. Tokyo, 27 (1980), 247-264.

[8] J. MORROW and H. ROSSI: Canonical embeddings, Trans. Amer. Math. Soc., 261
(1980), 547-565.

[9] J. MORROW and H. ROSSI: Some general results on equivalence of embeddings,
Proceedings of 1979 Princeton Conference on Complex Analysis, (1981), 299-325.

[10] J. MORROW and H. ROSSI: Embeddings of curves in surfaces, to appear.
[11] L. NIRENBERG and D. SPENCER: On rigidity of holomorphic embeddings, Con-

tributions to function theory, Tata Institute, Bombay, 1960.
[12] J. WAVRIK: Deformations of branched coverings of complex manifolds, Amer. J.

Math., 90 (1968), 926-960.

(Oblatum 25-11-1981 &#x26; 12-VIII-1981) Department of Mathematics
University of Utah
Salt Lake City, Utah 84112
U.S.A.


