@article{CM_1981__44_1-3_29_0, author = {de Bartolomeis, Paolo and Tomassini, Giuseppe}, title = {Traces of pluriharmonic functions}, journal = {Compositio Mathematica}, pages = {29--39}, publisher = {Sijthoff et Noordhoff International Publishers}, volume = {44}, number = {1-3}, year = {1981}, mrnumber = {662454}, zbl = {0484.32007}, language = {en}, url = {http://archive.numdam.org/item/CM_1981__44_1-3_29_0/} }
TY - JOUR AU - de Bartolomeis, Paolo AU - Tomassini, Giuseppe TI - Traces of pluriharmonic functions JO - Compositio Mathematica PY - 1981 SP - 29 EP - 39 VL - 44 IS - 1-3 PB - Sijthoff et Noordhoff International Publishers UR - http://archive.numdam.org/item/CM_1981__44_1-3_29_0/ LA - en ID - CM_1981__44_1-3_29_0 ER -
de Bartolomeis, Paolo; Tomassini, Giuseppe. Traces of pluriharmonic functions. Compositio Mathematica, Tome 44 (1981) no. 1-3, pp. 29-39. http://archive.numdam.org/item/CM_1981__44_1-3_29_0/
[1] Caractérisation locale par des opérateurs differentiels des restrictions à la sphère de Cn des fonctions pluriharmoniques C.R.A.S. (1977) A284 1029-1031. | MR | Zbl
:[2] (∂∂)b and the real part of CR functions Indiana Univ. Math. J. (1980) 29 3 333-340. | Zbl
:[3] Pluriharmonic boundary values Tohoku Math. (1974) 26 505-511. | MR | Zbl
, :[4] Functions pluriharmonic on manifolds Math. U.S.S.R. Isvestija (1978) 12 439-447. | Zbl
:[5] Traces of pluriharmonic functions Analytic Functions Kozubnik 1979 Lecture Notes in Math. 798 Springer (1980) 10-17. | MR | Zbl
, :[6] On the extension of holomorphic functions from the boundary of a complex manifold Ann. of Math. (1965) 81 451-473. | MR | Zbl
, :[7] Fonctions pluriharmoniques et solution fondamentale d'un opérateur du 4e ordre Bull. Sc. Math. 2s. (1977) 101 305-317. | MR | Zbl
:[8] Valeurs au bord des formes holomorphes Several Complex Variables, Proceedings of International Conferences, Cortona Italy 1976- 1977 222-245 Scuola Normale Superiore, Pisa (1978). | MR | Zbl
, :[9] Boundary values of Dolbeault Cohomology classes and a generalized Bochner-Hartogs Theorem Abh. Math. Sem. Univ. Hamburg (1978) 47 3-24. | MR | Zbl
, :[10] Dirichlet problem for n-harmonic functions and related geometrical properties Math. Ann. Bd. (1955) 130 s.202-218. | MR | Zbl
: