Algebraic characterizations of the algebra of functions and of the Lie algebra of vector fields of a manifold
Compositio Mathematica, Tome 45 (1982) no. 2, pp. 199-205.
@article{CM_1982__45_2_199_0,
     author = {De Wilde, M. and Lecomte, P.},
     title = {Algebraic characterizations of the algebra of functions and of the {Lie} algebra of vector fields of a manifold},
     journal = {Compositio Mathematica},
     pages = {199--205},
     publisher = {Martinus Nijhoff Publishers},
     volume = {45},
     number = {2},
     year = {1982},
     mrnumber = {651981},
     zbl = {0503.58038},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1982__45_2_199_0/}
}
TY  - JOUR
AU  - De Wilde, M.
AU  - Lecomte, P.
TI  - Algebraic characterizations of the algebra of functions and of the Lie algebra of vector fields of a manifold
JO  - Compositio Mathematica
PY  - 1982
SP  - 199
EP  - 205
VL  - 45
IS  - 2
PB  - Martinus Nijhoff Publishers
UR  - http://archive.numdam.org/item/CM_1982__45_2_199_0/
LA  - en
ID  - CM_1982__45_2_199_0
ER  - 
%0 Journal Article
%A De Wilde, M.
%A Lecomte, P.
%T Algebraic characterizations of the algebra of functions and of the Lie algebra of vector fields of a manifold
%J Compositio Mathematica
%D 1982
%P 199-205
%V 45
%N 2
%I Martinus Nijhoff Publishers
%U http://archive.numdam.org/item/CM_1982__45_2_199_0/
%G en
%F CM_1982__45_2_199_0
De Wilde, M.; Lecomte, P. Algebraic characterizations of the algebra of functions and of the Lie algebra of vector fields of a manifold. Compositio Mathematica, Tome 45 (1982) no. 2, pp. 199-205. http://archive.numdam.org/item/CM_1982__45_2_199_0/

[1] M. Cahen, M. De Wilde and S. Gutt: Local cohomology of the algebra of C∞ functions on a connected manifold. Lett. in Math. Physics 4 (1980), 157-167. | Zbl

[2] W. Greub, S. Halperin and R. Vanstone: Connections, curvature and cohomology, Vol. I, Academic Press, New York and London (1973). | Zbl

[3] R. Palais: Natural operations on differential forms. Trans. A.M.S. 92 (1959), 125-141. | MR | Zbl

[4] S. Van Strien: Unicity of the Lie Product. Comp. Math. 40 (1980), 79-85. | EuDML | Numdam | MR | Zbl