Torelli theorem for surfaces with p g =c 1 2 =1 and K ample and with certain type of automorphism
Compositio Mathematica, Volume 45 (1982) no. 3, pp. 293-314.
@article{CM_1982__45_3_293_0,
     author = {Usui, Sampei},
     title = {Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism},
     journal = {Compositio Mathematica},
     pages = {293--314},
     publisher = {Martinus Nijhoff Publishers},
     volume = {45},
     number = {3},
     year = {1982},
     mrnumber = {656607},
     zbl = {0507.14028},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1982__45_3_293_0/}
}
TY  - JOUR
AU  - Usui, Sampei
TI  - Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism
JO  - Compositio Mathematica
PY  - 1982
SP  - 293
EP  - 314
VL  - 45
IS  - 3
PB  - Martinus Nijhoff Publishers
UR  - http://archive.numdam.org/item/CM_1982__45_3_293_0/
LA  - en
ID  - CM_1982__45_3_293_0
ER  - 
%0 Journal Article
%A Usui, Sampei
%T Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism
%J Compositio Mathematica
%D 1982
%P 293-314
%V 45
%N 3
%I Martinus Nijhoff Publishers
%U http://archive.numdam.org/item/CM_1982__45_3_293_0/
%G en
%F CM_1982__45_3_293_0
Usui, Sampei. Torelli theorem for surfaces with $p_g = c^2_1 = 1$ and $K$ ample and with certain type of automorphism. Compositio Mathematica, Volume 45 (1982) no. 3, pp. 293-314. http://archive.numdam.org/item/CM_1982__45_3_293_0/

[1] D. Burns and M. Rapoport: On the Torelli problems for Kählerian K-3 surfaces. Ann, scient. Éc. Norm. Sup. 4e sér. 8-2 (1975) 235-274. | Numdam | MR | Zbl

[2] F. Catanese: Surfaces with K2 = pg = 1 and their period mapping. Proc. Summer Meeting on Algebraic Geometry, Copenhagen 1978, Lecture Notes in Math. No 732, Springer Verlag, 1-29. | Zbl

[3] A. Fujiki and S. Nakano; Supplement to "On the inverse of Monoidal Transformation", Publ. R.I.M.S. Kyoto Univ. 7 (1972) 637-644. | MR | Zbl

[4] D. Gieseker: Global moduli for surfaces of general type. Invent. Math. 43 (1977) 233-282. | MR | Zbl

[5] P. Griffiths: Periods of integrals on algebraic manifolds I, II, III: Amer. J. Math. 90 (1968) 568-626; 805-865; Publ. Math. I.H.E.S. 38 (1970) 125-180. | Numdam | Zbl

[6] F.I. Kĭnev: A simply connected surface of general type for which the local Torelli theorem does not hold (Russian). Cont. Ren. Acad. Bulgare des Sci. 30-3 (1977) 323-325. | MR | Zbl

[7] E. Looijenga and C. Peters: Torelli theorems for Kähler K3 surfaces, Comp. Math. 42-2 (1981) 145-186. | Numdam | MR | Zbl

[8] I. Piateckiĭ-Šapiro and I.R. Šafarevič: A Torelli theorem for algebraic surfaces of type K-3, Izv. Akad. Nauk. 35 (1971) 530-572. | MR

[9] A.N. Todorov: Surfaces of general type with pg = 1 and (K, K) = 1. I, Ann. scient. Éc. Norm. Sup. 4e sér. 13-1 (1980) 1-21. | Numdam | Zbl

[10] S. Usui: Period map of surfaces with pg = c21= 1 and K ample. Mem. Fac. Sci. Kochi Univ. (Math.) 2 (1981) 37-73. | MR | Zbl

[11] S. Usui: Effect of automorphisms on variation of Hodge structure. J. Math. Kyoto Univ. 21-4 (1981). | MR | Zbl

[12] F. Catanese: The moduli and the global period mapping of surfaces with K2 = pg = 1: A counterexample to the global Torelli problem, Comp. Math. 41-3 (1980) 401-414. | Numdam | MR | Zbl