Loops which are cyclic extensions of their nuclei
Compositio Mathematica, Tome 45 (1982) no. 3, pp. 341-356.
@article{CM_1982__45_3_341_0,
     author = {Goodaire, Edgar G. and Robinson, D. A.},
     title = {Loops which are cyclic extensions of their nuclei},
     journal = {Compositio Mathematica},
     pages = {341--356},
     publisher = {Martinus Nijhoff Publishers},
     volume = {45},
     number = {3},
     year = {1982},
     mrnumber = {656610},
     zbl = {0488.20057},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1982__45_3_341_0/}
}
TY  - JOUR
AU  - Goodaire, Edgar G.
AU  - Robinson, D. A.
TI  - Loops which are cyclic extensions of their nuclei
JO  - Compositio Mathematica
PY  - 1982
SP  - 341
EP  - 356
VL  - 45
IS  - 3
PB  - Martinus Nijhoff Publishers
UR  - http://archive.numdam.org/item/CM_1982__45_3_341_0/
LA  - en
ID  - CM_1982__45_3_341_0
ER  - 
%0 Journal Article
%A Goodaire, Edgar G.
%A Robinson, D. A.
%T Loops which are cyclic extensions of their nuclei
%J Compositio Mathematica
%D 1982
%P 341-356
%V 45
%N 3
%I Martinus Nijhoff Publishers
%U http://archive.numdam.org/item/CM_1982__45_3_341_0/
%G en
%F CM_1982__45_3_341_0
Goodaire, Edgar G.; Robinson, D. A. Loops which are cyclic extensions of their nuclei. Compositio Mathematica, Tome 45 (1982) no. 3, pp. 341-356. http://archive.numdam.org/item/CM_1982__45_3_341_0/

[1] V.D. Belousov: Foundations of the theory of quasigroups and loops (Russian), Izdat. "Nauka", Moskow, 1967. | MR

[2] R.H. Bruck: A survey of binary systems, Springer-Verlag, 1958. | MR | Zbl

[3] R.P. Burn: Finite Bol loops, Math. Proc. Cambridge Philos. Soc. 84 (1978), no 3, 377-385. | MR | Zbl

[4] Orin Chein: Moufang loops of small order I., Trans. Amer. Math. Soc. 188 (1974) 31-51. | MR | Zbl

[5] Edgar G. Goodaire and D.A. Robinson: A class of loops which are isomorphic to all loop isotopes, submitted. | Zbl

[6] Marshall Hall, Jr.: The theory of groups, Macmillan, 1959. | MR | Zbl

[7] Harald Niederreiter and KARL.H. Robinson: Bol loops of order pq, to appear. | MR | Zbl

[8] J. Marshall Osborn: Loops with the weak inverse property, Pacific J. Math. 10 (1960) 295-304. | MR | Zbl

[9] D.A. Robinson: Bol loops, Trans. Amer. Math. Soc. 123 (1966) 341-354. | MR | Zbl

[10] Eric L. Wilson: A class of loops with the isotopy-isomorphy property, Canad. J. Math. 18 (1966) 589-592. | MR | Zbl

[11] Robert L. Wilson, Jr.: (a) Loop isotopism and isomorphism and extensions of universal algebras, Ph.D. Thesis, University of Wisconsin, Madison, 1969.(b) Isotopy-isomorphy loops of prime order, J. Algebra 31 (1974) 117-119.(c) Quasidirect products of quasigroups, Comm. Algebra 3(9) (1975) 835-850. | MR | Zbl