Homogeneous subsets of the real line
Compositio Mathematica, Tome 46 (1982) no. 1, pp. 3-13.
@article{CM_1982__46_1_3_0,
     author = {Van Mill, Jan},
     title = {Homogeneous subsets of the real line},
     journal = {Compositio Mathematica},
     pages = {3--13},
     publisher = {Martinus Nijhoff Publishers},
     volume = {46},
     number = {1},
     year = {1982},
     mrnumber = {660152},
     zbl = {0514.54011},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1982__46_1_3_0/}
}
TY  - JOUR
AU  - Van Mill, Jan
TI  - Homogeneous subsets of the real line
JO  - Compositio Mathematica
PY  - 1982
SP  - 3
EP  - 13
VL  - 46
IS  - 1
PB  - Martinus Nijhoff Publishers
UR  - http://archive.numdam.org/item/CM_1982__46_1_3_0/
LA  - en
ID  - CM_1982__46_1_3_0
ER  - 
%0 Journal Article
%A Van Mill, Jan
%T Homogeneous subsets of the real line
%J Compositio Mathematica
%D 1982
%P 3-13
%V 46
%N 1
%I Martinus Nijhoff Publishers
%U http://archive.numdam.org/item/CM_1982__46_1_3_0/
%G en
%F CM_1982__46_1_3_0
Van Mill, Jan. Homogeneous subsets of the real line. Compositio Mathematica, Tome 46 (1982) no. 1, pp. 3-13. http://archive.numdam.org/item/CM_1982__46_1_3_0/

[1] K. Kuratowski: Topologie II, Warsaw (1952).

[2] J. Menu: A partition of R in two homogeneous and homeomorphic parts (to appear).

[3] J. Van Mill: Characterization of some zero-dimensional separable metric spaces Trans. Amer. Math. Soc. 264 (1981) 205-215. | MR | Zbl

[4] J. Van Mill: Characterization of a certain subset of the Cantor set, to appear in Fund. Math. | MR | Zbl

[5] J. Van Mill: Periodic homeomorphisms on strongly homogeneous zero-dimensional spaces (to appear).