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0. Introduction

Let X be a non-singular complete algebraic surface defined over an
algebraically closed field k of characteristic p. X is called unirational if
there exists a generically surjective rational mapping from the pro-
jective space p2 to X. Recently, Blass has shown that an Enriques’ sur-
face in characteristic 2 is unirational if and only if it is either classical or
supersingular in the sense of Bombieri and Mumford (see Blass [1], and
Bombieri and Mumford [3]). And he asked whether the surfaces in a
certain class are Zariski surfaces (for the definition, see Section 1). In
this note, we show that they are not Zariski surfaces, and give in charac-
teristic 2 examples of unirational surfaces of purely inseparable type
which are not Zariski surfaces. The author thinks that these are the first

examples of unirational surfaces of purely inseparable type which are
not Zariski surfaces (see Blass [2]). Finally, we prove that the other
Enriques’ surfaces which are either classical or supersingular are uni-
rational elliptic or quasi-elliptic surfaces of base change type (for the
definition, see Section 1, and also see Katsura [5]).

Notations

Let X be a non-singular projective surface defined over an algebrai-
cally closed field k of characteristic p. We denote by Ox the structure
sheaf of X. We denote by F the Frobenius map which acts on Ox by
f - fP for fE Ox. Let ,f’ be a sheaf on X. We denote by Hi(X,fF) the
i-th cohomology group of .97. We denote by Q’ x the sheaf of regular
i-forms. We set X(Ox) ¿;=o(-l)idimkHltX,Ox). We denote by Bi(X)
(resp. cl(X), c2(X)) the i-th Betti number (resp. the first Chern class, the
second Chern number) of X. q(X) means the dimension of the Albanese
variety of X.
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1. Preliminaries and results

Let X be a non-singular complete algebraic surface defined over an
algebraically closed field k of characteristic p.

DEFINITION 1.1: X is called a unirational surface of purely inseparable
type if there exists a generically surjective purely inseparable rational
mapping 9 from the projective plane p2 to X. In particular, X is called
a Zariski surface if there exists a rational mapping qJ as above with

degree ç = p.

DEFINITION 1.2: Let n: X -+ C be an elliptic (resp. quasi-elliptic) sur-
face with a non-singular complete curve C defined over k. X is said to
be a unirational elliptic (resp. quasi-elliptic) surface of base change type if
there exist a curve C’ and a morphism f from C’ to C such that the fiber
product S x c C’ is rational.

Using a result in Bombieri and Mumford [3], we can easily prove
that any unirational quasi-elliptic surface-is of base change type.
Now, let the characteristic of the field k be equal to 2. We consider an

Enriques’ surface X defined over k. By Bombieri and Mumford [3],
Enriques’ surfaces are divided into three classes as follows:

1) classical if dim H1(X, Ox) = 0,
2) supersingular in the sense of Bombieri and Mumford if

dim H1(X, Ox) = 1 and F is zero on H1(X, Ox).
3) singular if dim H1(X, Ox) = 1 and F is bijective on H1(X, Ox).
In any case, X has a canonical principal covering space 1 - X of

degree 2 such that X is a "K3-like" surface. In [4], Crew proved that the
surfaces in Class 3) are not unirational. ’Blass divided the surfaces in
Classes 1) and 2) into four classes, that is,

Class 1) i) X is classical and 1 is birationally isomorphic to a K3
surface.

ii) X is classical and 1 is birationally isomorphic to a ra-
tional surface.

Class 2) i) X is supersingular and 1 is birationally isomorphic to a
K3 surface.

ii) X is supersingular and X is birationally isomorphic to a
rational surface.

And he proved that all these surfaces are unirational. We first prove the
following.

THEOREM 1: The surfaces in Classes 1) i) and 2)i) are not Zariski

surfaces.
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REMARK 1.3: Examples of such Enriques’ surfaces are given in

Bombieri and Mumford [3]. As is stated in Blass [1], we have a purely
inseparable rational mapping of degree 22 from the projective plane p2
to the surfaces in Classes 1) i) and 2) i), using the result of Rudakov and
Shafarevich [8]. And so, Theorem 1 gives in characteristic 2 examples of
unirational surfaces of purely inseparable type which are not Zariski
surfaces.

By Bombieri and Mumford [3], any Enriques’ surface has a structure
of an elliptic or quasi-elliptic surface. For any such structure, we have
the following.

THEOREM 2: The surfaces in Classes 1) ii) and 2) ii) are Zariski elliptic
or quasi-elliptic surfaces of base change type, that is, they are transformed
into rational surfaces by the base change of the purely inseparable morph-
ism of degree 2.

THEOREM 3: Any Enriques’ surface in Class 1) i), 2) i) or 3) cannot have
a structure of a quasi-elliptic surface, that is, it has a structure of an
elliptic surface.

2. Proof of Theorem 1

First, we consider Class 1) i). Let U = {Ui} (i = 1, 2,..., n) be an affine
open covering of X. Let a = {fij} be a non-zero 1-cocycle with respect
to 4Y which corresponds to a non-zero element of Pic"(X). Since Pic’(X)
= Z/2Z, we have

where fi’s are suitable elements of r(Ui, 0,*).
We have a purely inseparable double covering

defined by

and

Suppose that X is a Zariski surface. Then, there exists a purely insep-
arable rational mapping of degree 2 from the projective plane p2 to X.
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By some blowing-ups, we have a purely inseparable morphism of
degree 2:

Then, we have an (not always affine) open covering

of p2, and we have an injection

(cf. Kodaira and Morrow [6]).
Since Hl(P2, Op,) has no torsion and qJ*a, is a torsion, we have

9 *a = 0. This means that there exists a suitable element Fi in r( qJ - l(Ui),
°’2) (i = 1, 2,..., n) such that

Using (2.1), we have

Therefore, we have a function g on 12 such that

Since g has no poles on p2, g must be a non-zero constant c. Replacing
Fi by C1/2 Fi (i = 1, 2,..., n), we can assume g = 1. So we have

It is easy to see that zi’s and Fi’s are not contained in k(X). Therefore, we
have

for some i. By the defining equations (2.3) and (2.10), we can conclude
that k(X) is isomorphic to k(P2), which contradicts the fact that 9 is
birationally isomorphic to a K3 surface.
Now, we consider Class 2) i). Let * = {Ui} (i = 1, 2,..., n) be an affine

open covering of X. Let fi = {fij} be a non-zero 1-cocycle with respect
to W which corresponds to a non-zero element of H1(X, Ox). Since the
Frobenius morphism acts trivially on H1(X, Ox), we have

where fi’s are elements of F(Ui, Ox). We have a purely inseparable
double covering
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defined by

and

Suppose that X is a Zariski surface. Then we have a purely inseparable
rational mapping of degree 2 from the projective plane p2 to X. By
some blowing-ups, we have a purely inseparable morphism of degree
2:

We have an (not always affine) open covering

and it is easy to see that for the first cohomology group we have an
injection

(cf. Kodaira and Morrow [6]).
Since H’(P’,OP2) = 0, we have H1(qJ-l(dIJ), Op2) = 0. Therefore, there

exists a suitable element Fi in r(qJ -l(Ui), OP2) (i = 1, 2,..., n) such that

Using (2.12) and (2.18), we have

Therefore, we have a function g on p2 such that

Since g has no poles on p2, it must be a constant c. Replacing Fi by
Fi + Cl/2 (i = 1, 2,..., n), we can assume g = 0. So we have

It is easy to see that zi’s and Fi’s are not contained in k(X). And so, we
have

for some i. By (2.14) and (2.21), we can conclude that k(X) is isomorphic
to k(ë’), which contradicts the fact that k(1) is birationally isomorphic
to a K3 surface. q.e.d.
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3. Elliptic or quasi-elliptic fibrations

In this section, we prove Theorems 2 and 3. To begin with, we prove
the following proposition.

PROPOSITION 3.1: Let ’Tt: X -+ pl be an elliptic or quasi-elliptic surface
over the projective line pl defined over an algebraically closed field k of
characteristic p &#x3E; 0. Suppose q(X) = 0 and H1(X,Ox) =1= 0. Moreover,
suppose that the Frobenius map is nilpotent on H1(X,Ox). Then there
exists a rational 1-form ro on pl such that n*m is a non-zero regular
1- form on X.

PROOF: By Leray’s spectral sequence, we have H’(X, Ox)
g; HO(Pl, R1n*Ox). By Bombieri and Mumford [3], we have R1n*(Ox)
= L E) T, where L is an invertible sheaf and T is supported precisely at
the points P c- P 1 at which n-l(p) is a wild fiber. And we have degree
L = - X(Ox) - length T. Since we have B1 = 2q = 0 and X(Ox) =
(C2 1 + c2)/12 = (2 + B2)/12 is positive, degree L is negative. There-
fore, we have H1(X, Ox) = HI(P’, T).

Since H1(X, Ox) is not zero, this elliptic fiber space has some wild
fibers. Let t be the coordinate of P’. Then we can assume that

E = n - ’(oo) is a regular fiber and E’ = n - ’(0) is a wild fiber. We con-
sider the exact sequence

We have the long exact sequence

Since X(Ox) is positive and H1(X,Ox) is not zero, we see that

dim H°(X, Q2) is positive. The base curve is a projective line, we have

Since dim H1(E, OE) = 1, we have an isomorphism:

On the other hand, since E is linearly equivalent to E’, we have an
isomorphism:

Therefore we have an isomorphism:
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Thus by (3.4) and (3.6) we have an isomorphism:

Now we consider the exact sequence

We have the exact sequence

Since E’ is a wild fiber, we have dim H°(E’, OE-) &#x3E;_ 2. This means that
there exists an element a of H°(E’, OE,) such that b(a) is not zero. We
represent a by a Cech cocycle {gi} with respect to an affine open cover-
ing {Ui} (i E I). We have

where fij is a regular function on Ui n Uj (i,jEI). By our choice, b({gi})
= {hjt} is not zero in H1(X, Ox( - E’)). Therefore J({hjt}) = {hj} is not
zero in H1(X,Ox). By assumption, F is nilpotent on H1(X,Ox). There-
fore there exists an integer n such that

and {hf"-l} is not zero in H1(X, 0x), where f is a regular function on Ui
(i c- I). By (3.10) and (3.11), we have

Thus f - (gi/t)pn (i E I) define a rational function h on X. It has a pole
only on E’. Putting U = Pl - {t = 0}, we see that h is a regular function
on n-l(U). Since n*Ox = °P1, we can conclude that h is a function of t.
We write it by h(t). Derivating h(t), we have

By (3.11), df defines a non-zero regular 1-form on X. Hence, we have a
rational 1-form dh(t) on pl such that dh(t) is a non-zero regular 1-form
on X. q.e.d.

PROPOSITION 3.2: Suppose that the characteristic of k is equal to 2. Let
X be an Enriques’ surface defined over k. Then we have the following.

a) If X is classical, then there exists a rational 1-form w on Pl such
that n*w is a non-zero regular 1-form on X. By a suitable coordinate t of
Pl, we can express it by the form dt/t.

b) If X is supersingular in the sense of Bombieri and Mumford, there
exists a rational 1-form w on Pl such that n*co is a non-zero regular 1-
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form on X. By a suitable coordinate t of Pl, we can express it by the form
dt.

PROOF: In the case of a), X has an elliptic or quasi-elliptic fibration
n : X - P’ with two multiple fibers of multiplicity two. Let t be a local
coordinate of pl. We can assume that multiple fibers exist on t = 0 and
t = oo. Then, n*(dtlt) is regular on XBn-l(O) u n-l( (0). Let P be a point
on n-l(O) on which the reduced divisor n-l(O)red is non-singular. Using
the local parameter s which defines n-l(O)red at P, we have

where u is a unit in the complete local ring Ôp and 2n is the multiplicity
of n-’(0) at P. Then we have n*(dt/t) = du/u. This is regular at P. By the
same way, we can prove that n*(dt/t) is regular at the non-singular
points on n-l( 00 )red. Therefore n*(dtlt) is regular except at a finite

number of points. Since the irregular points of rational 1-form is a divi-
sor, we can conclude that n*(dt/t) is regular.

b) is the direct consequence of Proposition 3.1. We have the normal
form dt, using the construction in the proof. We omit the detail. q.e.d.

REMARK 3.3: Lang calculates the dimension of H°(X, Q’) (see Lang
[7]).

PROOF OF THEOREM 2: n: X -+ P 1 be an elliptic or quasi-elliptic fibra-
tion on an Enriques’ surface X in Class 1) ü) or 2)ii). Then we have the
following diagram:

where p2 is suitable blowing-ups of the projective space P2, ç is a gen-
erically surjective purely inseparable morphism of degree 2 and f is a
morphism such that n o ç = f
By Proposition 3.2, we have a non-zero rational 1-form co on P’ such

that n*w is a regular 1-form on X. Hence, we have a regular 1-form
qJ*n*w on p2. On the other hand, since there exists no regular 1-form
on p2, qJ*n*w must be zero. Therefore, we have J*w = 0. Hence, the
function field k(Pl) is not algebraically closed in the function field k(P2).
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We consider the normalization C of P’ in k(P2). Then, we have the
following diagram:

where fl is a normalization morphism, and we have ({J = ({JI a ({J2, and

f = fi f2. Since we have deg p = 2 and deg fl &#x3E; 1 we have

Hence, X xp1C is birationally isomorphic to a rational surface. Thus,
the elliptic or quasi-elliptic surface n : X - P’ is a unirational elliptic or
quasi-elliptic surface of base change type. q.e.d.

Finally, we prove Theorem 3.

PROOF OF THEOREM 3: Suppose that n : X -+ P’ is a quasi-elliptic fi-

bration on an Enriques’ surface in Class 1) i), 2) i) or 3). Then, by the
base change of the purely inseparable morphism of degree 2, X is trans-
formed into a rational surface Y (cf. Bombieri and Mumford [3]), which
contradicts Theorem 1 for the surfaces in Classes 1) i) and 2) i). For a
surface X in Class 3), as is stated in Section 1, we have an étale covering
1 of X of degree 2. Then, we have a rational mapping from Y to i such
that the mapping Y-+ X is factored as Y - 1 - X (cf. Serre [9]), which
contradicts the fact that the mapping Y-+ X is a purely inseparable
morphism of degree 2. q.e.d.
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