Derivatives of L-functions at s=0 (after Stark, Tate, Bienenfeld and Lichtenbaum)
Compositio Mathematica, Volume 48 (1983) no. 1, p. 119-127
@article{CM_1983__48_1_119_0,
     author = {Chinburg, T.},
     title = {Derivatives of $L$-functions at $s = 0$ (after Stark, Tate, Bienenfeld and Lichtenbaum)},
     journal = {Compositio Mathematica},
     publisher = {Martinus Nijhoff Publishers},
     volume = {48},
     number = {1},
     year = {1983},
     pages = {119-127},
     zbl = {0505.12022},
     mrnumber = {700583},
     language = {en},
     url = {http://www.numdam.org/item/CM_1983__48_1_119_0}
}
Chinburg, T. Derivatives of $L$-functions at $s = 0$ (after Stark, Tate, Bienenfeld and Lichtenbaum). Compositio Mathematica, Volume 48 (1983) no. 1, pp. 119-127. http://www.numdam.org/item/CM_1983__48_1_119_0/

[1] M. Artin: Grothendieck Topologies. Harvard University, 1962. | Zbl 0208.48701

[2] M. Artin and J.L. Verdier: Seminar notes on the etale cohomology of number fields. In: Proceedings of the Woods Hole Summer Institute in Algebraic Geometry, 1964.

[3] M. Bienenfeld: Ph.D. Dissertation. Cornell University, 1980.

[4] T. Chinburg: On a consequence of some conjectures on L-series, preprint (1981).

[5] S. Lichtenbaum: Values of zeta and L-functions at zero. Asterisque 24-25 (1975) 133-138. | MR 401711 | Zbl 0312.12016

[6] I. Reiner: Maximal Orders. Academic Press, U.S.A., 1975. | MR 1972204 | Zbl 0305.16001

[7] J.P. Serre: Linear Representations of Finite Groups. Springer-Verlag, U.S.A., 1977. | MR 450380 | Zbl 0355.20006

[8] H. Stark: L-functions at s = 1. I, II, III, IV, Advances in Math. 7 (1971) 301-343; 17 (1975) 60-92; 22 (1976) 64-84; 35 (1980) 197-235. | Zbl 0475.12018

[9] H. Stark: Derivatives of L-series at s = 0. To appear. | MR 633665

[10] H. Stark: Class Fields and Modular Forms of Weight One. In: Modular Functions of One Variable V, Lecture Notes in Mathematics #601, Springer-Verlag, Berlin, Heidelberg, New York, 1977. | MR 450243 | Zbl 0363.12010

[11] J. Tate: Les conjectures de Stark sur les fonctions L d'Artin en s = 0; notes d'un cours à Orsay redigées par D. Bernadi et N. Schappacher. To appear. | MR 782485 | Zbl 0545.12009

[12] A. Weil: Basic Number Theory, 2nd ed. Springer-Verlag, U.S.A., 1974. | MR 427267