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In this paper we study Jacobi-sum Hecke characters of mixed level.
Jacobi-sum Hecke characters were introduced by Weil in his funda-
mental paper [1], where he only considered the case of a cyclotomic
field. The definition was extended to arbitrary abelian fields by Weil [2]
and Deligne [3], but always keeping the level fixed. Weil, in [2], gives
necessary and sufficient conditions for a candidate for a Jacobi-sum

Hecke character to actually be one (which amount to saying that the
infinity-type is an element of the integral group ring). Deligne goes on to
associate a product of values of the r-function to each Jacobi-sum

Hecke character (or, more precisely, to each Jacobi-sum representation,
since these may not be unique). In [4] he shows that if the infinity-type
is a power of the norm, so the Hecke character is ~Nk, where x is a

Dirichlet character, then the above r-product, divided by (27n)B is al-
gebraic and transforms via x.
We extend the theorems of Weil and Deligne to the case of Jacobi-

sum characters of mixed level. In [5], one of the authors extends the
definition of Jacobi-sum Hecke character and the theorem of Weil still

further, by allowing composition with the norm to smaller fields. Our
work leads naturally to the introduction of new identities involving
Gauss sums, generalizing those of Hasse-Davenport ([6]). These iden-
tities had previously been discovered and proved by Langlands in his
work on Artin root numbers, but had never been published. We were
unfortunately unaware of this. They follow here as easy consequence of
our results and appear in Section 6.

The original motivation for this work was an investigation by one of
the authors of the relationship between the value at zero of the L-
function of a Jacobi-sum Hecke character of an imaginary quadratic
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field and its F-product ([7]). For such a relation to exist, the r-product
of any representation of the trivial character over an imaginary quadra-
tic field has to be rational, and this is an immediate consequence of our

generalization of Deligne’s theorem.
Our proofs rely on the original results of Weil and Deligne, but we do

give an independent proof of Deligne’s theorem if K c Q(up) for p
prime.

Notations.

N: depending on the context, the Norm Hecke character, the norm in
the group ring of a finite group, the norm relative to a finite field exten-
sion, or the norm of a prime ideal.

Z, Q, R, C: The integers, rationals, reals and complexes.
(x): The unique real number y such that 0 ~ y  1 and y = x (mod Z).
y&#x3E;N: The remainder of the integer y when divided by N.
#S : The cardinality of the finite set S.

§1. The statement of the theorem

Let F be a finite field, x and 03C8 non-trivial multiplicative and additive
characters of F to Cx, respectively. We define the (modified) Gauss sum
G(x, 03C8) to be - LxeFx ~(x)03C8(x). If F has characteristic p, we fix once and

2,ni i

for all the additive character 03C8(x) = (ep)Trx, where Tr denotes the trace
from F to Z/PZ, and we write G(x) for G(x, 03C8).

Let ,uN = e203C0i/N and, let GN = G(Q(,uN)/Q), be identified with (7L/N7L)X
as usual. Let p be a prime ideal of the ring of integers 03B8N of Q(03BCN) with
residue field characteristic p prime to N, and norm equal to q. Then we
have the canonical multiplicative character X,,N(X) = t(x"-’)I’). Here t(y)
denotes the unique lifting of the N-th root of unity y to 03B8N, If a is in
?L/N7L, define JN(a, p) to be G(X:,N). We note that if a = 0, JN(a, p) = 1.
Now let k be an abelian extension of Q, and fix an embedding of k

into C. Let {Ni} for i = 1, 2,..., s be a collection of integers ~ 2, such
that k c Q(03BCNi) for all i. Let 0 be a collection of maps

DEFINITION 1.1: We define the infinity-type 1(0) to be the element of
the rational group-ring Q[G(k/Q)] given by
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Here f is any lifting of s to GNi, and then to Z, à and  are any liftings
of a and b to Z, and the definition is obviously independent of the
choice of liftings.

PROPOSITION 1.2: The following are equivalent:
(i) 1(0) is in 7L[G(k/Q)].

(ii) 03A3i03A303B1ri(03B1)03A3b~GNi ab Ni is integral.
PROOF: It is clear that (i) ~ (ii), since -ab Ni - ( - Ni~ ~ Z, and

(ii) ~ (i) since Ei E,, ri(a) Eb ~- Ni~ ~ (03A3i03A303B1ri(03B1) ~- Ni~) (mod Z).
DEFINITION 1.3: If 0 satisfies the equivalent conditions of the above

proposition, we say 0 is of Weil type.

DEFINITION 1.4: We say that 0 is of Deligne type if 1(0) is a multiple of
the norm N in Z[G(k/Q)], and we define n(03B8) by 1(0) = n(03B8)N.

Let N = Ni and let S be the set of prime ideals of k dividing N.
Let Is be the group generated by the prime ideals p of k not in S. We
define a function J(03B8) : I, - C’

where the last product is taken over all f in Q(03BCNi) dividing p.
We wish to prove the following two theorems:

THEOREM 1.5 (Generalized Weil’s Theorem): If 0 is of Weil type, then
i) J(03B8) takes values in k

ii) J(9) is a Hecke character with infinity-type 1(0). More precisely,
there exists an integral ideal f in k such that if a ~ 1 (modx f), then

J(03B8)((03B1)) = 03B1I(03B8)

iii) f divides some power of N.

We remark that Weil proves this theorem in [2], for the case when s = 1
and all the ri(03B1)’s are ~ 0, but the case when s = 1 and the ri(03B1)’s are
arbitrary is an immediate consequence.



58

Now define r(0) to be

and

r*(8) to be 0393(03B8)(203C0i)-n(03B8).

THEOREM 1.6 (Generalized Deligne’s Theorem): If 8 is of Deligne type,
then

(i) r*(8) generates an abelian extension K of k, which is Galois over Q.
(ii) If we let X(8) = J(03B8)N-n(03B8), then X(8) is a character of K/k and r*(8)

transforms via X(8) in the sense that if u is in G(K/k), ar*(8) = x(a)r*(8).
If s = 1, then this becomes Deligne’s Theorem ([3], p. 339).

§2. Some arithmetic lemmas

We start by fixing our terminology and notation. Let p be a prime, let
f be a positive integer, and q = pf. Given a in 7L such that 0 ~ a  q,
write a = 03A3f-1i=0 aipi, with ai 7L and 0 ~ a,  p. Let 03B3(a) = 03A0f-1i=0(ai)!,
and let s(a) = Ef -’ ai. If x is in 7 p, let r,(x) be the unique integer such

that 0 ~ rq(x)  q, and rq(x) ~ x (mod q). If 1 is prime, let 
y 

denote the

Legendre symbol modulo 1.

LEMMA 2.1 (Gauss’ Lemma): If 1 is an odd prime and m is an integer

prime to 1, then 
m 

= (-1)03BC, where J1 is the number of members of the

set {m, 2m, ..., 2(l - 1)m} whose least positive residue mod 1 is greater
than 1 2l.

PROOF: By definition of ,u, we have
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LEMMA 2.2: Let 1 and p be odd primes. Then

PROOF: Let x = rq(-j/l). We have lx = yq - j for some y ~ Z. We see
that yq = lx + j and 0 ~ x  q together imply 0 ~ y ~ l. Since j  l,
y  l, so 0 ~ y ~ l - 1. But y jq (mod 1) implies that y = rl(j/q). So
(- 1)03A3rq(-j/l) = (-1)l03A3rq(-j/l) = -1)03A3(rl(j/q)-j), since 1 and q are both odd.

Now consider the set {rl(j q)}, , for j = 0,..., (1 - 1)/2. Since x and

1 - x cannot both occur in this set, exactly one must occur, and if we let
q-1 = m in Gauss’ Lemma, y becomes the number of times that 1 - j
occurs instead of j. Since 1 is odd (-1)03A3(rl(j/q)-j) = (-1)03BC = (by Gauss’

Lemma) q- q-
LEMMA 2.3: Let oc be an integer, 0  ot  p. Then (03B1!)(p - 1 - 03B1)! =

(-1)03B1-1(mod p).

PROOF: This follows immediately from Wilson’s Theorem by
induction.

LEMMA 2.4: Let 1 and p be primes, and assume 1 is odd. Then

PROOF: Since the lemma is obvious for p = 2, we may assume p is
odd. Let x = 03A3fi=0 xipi be an integer between 0 and q - 1 inclusive.

Then q - 1 - x = E(p - 1 - XJpi, and y(x)y(q - 1 - x) = 03A0(xi)!
(p - 1 - xJ! ~ (-1)f+03A3xi, by Lemma 2.3. Also, LXi == x (mod(p - 1)),
hence mod 2, so y(x)y(q - 1 - x) == (-1)f+x (mod p). If we now let y =
- j/l, and x = rq(y), then q - 1 - x = rq(-(l - j)/l),

hence l-1 03A0 y(r«(-jll» ~ (-1)f(l-1 2) (-1) (l-1)/2 03A3 j = 0 rq(-j/l)

;=o

~ (-1)f(l-1 2)[q l] (mod p) by Lemma 2.2.
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PROPOSITION 2.5: Let p be a prime, a an integer, and q = pf. Let 1 be a
positive integer prime to p. Let b(j, a) be the unique integers such that
0 ~ b(j, a)  q, and lb(j, a) = a - j (mod q) for j = 0,1,..., l - 1. Then

i) f(a) = la(03A0l-1j=0 03B3(b(j, a)))/y(a) is independent of a (mod p).
ii) g(a) = 03A3l-1j=0 s(b(j, a)) - s(a) is independent of a.

iii) If p is prime and 1 is an odd prime, then

PROOF: We will prove by induction on a that f(a) ~ f(0) (mod p) and
g(a) = g(O). This is clear if a = 0. Now suppose we know these relations
for a - 1. Since the collections {b(j, a)} and {b(j, a - 1)1 agree except
for their first and last elements, we must prove that l03B3(b(0, 03B1))/03B3(03B1) ~
y(b(l - 1, a - 1))/y(a - 1) (mod p) and s(b(O, 03B1)) - s(a) = s(b(l - 1, a - 1))
- s(a - 1). These are immediately equivalent to: ly(b)/y(b - 1) ~

y(a)/y(a - 1) (mod p) and s(b) - s(b - 1) = s(a) - s(a - 1), where b

= b(o, a).
Let a’ = aj be the first non-zero coefficient in the p-adic expansion

of a. Then by Wilson’s theorem y(a)/y(a - 1) ~ a’(-1)j (mod p). If

b = 03A3f-1i=0 bipi and if b’ = bi is the first nonzero coefficient in the p-adic
expansion of b, then we must have i = j and lb’ = a’ (mod p), since (1, p)
= 1 and lb --- a (mod q). Since y(b)/y(b - 1) - b’(-1)j (mod p), (i) follows.
Also, s(a - 1) - s(a) = j(p - 1) - 1 = i(p - 1) - 1 = s(b - 1) - s(b), so

(ii) follows.
To see (iii), we observe that f(0) = 03A0l-1j=003B3(b(j, 0)) = 03A0l-1j=003B3(rq(-j/l)),

and use Lemma 2.4.

PROPOSITION 2.6: Let 1 be an odd prime, p a prime different from l, and

q = pf, f an integer &#x3E; 1. Then

PROOF:
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by quadratic reciprocity. This in turn e q uals [p l]f (-1)(q-1 p-1)(p-1 2)(l-1 2)
(since (q - 1)/(p - 1) ~ f (mod 2)) which obviously is the same as

[q l](-1)(l-1 2)(q-1 2).
PROPOSITION 2.7: Let n = Ç - 1, where p is a prime and 03B6 is a primitive

p-th root of unity. Then p/03C0p-1 ~ (-1) (mod 7r).

PROOF: We may assume p is odd. We know that N n = p,

where is the norm from Q(03B6) to Q. N7r = 03A003C3~(Z/pZ)x(03C303C0), so P/03C0p-1
= 03A003C3(03C003C3/03C0). But if 6 = 03C3b, then 03C003C3 = 1 - 03B6b and 03C003C3/03C0 = (1 - 03B6b)/(1 - 0
= 1 + 03B6 + ... + 03B6b-1 ~ b (mod n), since ( = 1 (mod n). The result then
follows immediately from Wilson’s Theorem.

PROPOSITION 2.8: Let p be a prime and 1 be an odd prime, M an integer
&#x3E; 1, and assume that (p, M) = (l, M) = 1. Set N = lM. Let q be minimal
such that q is a power of p and M divides q - 1. Let g be minimal such
that N divides qg - 1. Assume g &#x3E; 1. Let 0 ~ a  N and let 0 ~ b  N be

such that b --- 0 (mod l) and b ~ a (mod M). Then l~b(qg -1)/N~q ~
a(q - 1)/M (mod (q - 1)).

PROOF: We know that b is the unique integer ~ 0 and  N such that
b ~ 0 (mod 1) and b = a (mod M). Let x be such that 0 ~ x  q - 1 and
lx ~ a(q - 1)/M (mod (q - 1)). Then x is unique since 1§q - 1 by as-
sumption. Then lx = b’(q - 1)/M with 0 ~ b’  N. Thus b’(q - 1) ~ 0
(mod 1) which implies b’ = 0 (mod l) which implies that b’ = b since

b’ ~ a (mod M). Then x ~ b(qg - 1)/N (mod q) so x = ~b(qg - 1)/NB
which proves the proposition.

PROPOSITION 2.9: (Gauss multiplication formula)

PROOF: See ([8], p. 162).
Let F be a finite field, X a character of F" of order l, 03C8 a character of

Fx. Then:
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PROPOSITION 2.10: (Hasse-Davenport distribution formula)

PROOF: This is essentially (0.91) of Hasse-Davenport ([6], p. 172).

COROLLARY 2.11: Let k = Q(JlN) and IIN, M = N/l &#x3E; 1. Then, in the
notation of 1, if p is a prime of k prime to N, we have:

PROOF: This follows immediately from Proposition 2.10, with x =

= ~Mp,N and 03C8 = ~ap,n.
Let E be a finite extension of F of degree r, and let xE be the character

of EX defined by xE = ~ ° NE/F. Then we have

PROPOSITION 2.12: (Hasse-Davenport theorem)

PROOF: This is (0.8) of Hasse-Davenport ([6], p. 172).

PROPOSITION 2.13: (Stickelberger’s Theorem) Let F = Q(03BCM) c C and
let p be a prime ideal of OF of characteristic p prime to M. Let q = Np,
k(p) be the residue field at p, and let t be the natural lifting from the M-th
roots of unity in k(p) to M-th roots of unity in F. Given a in 7L/ M7L, let ~a

be the complex-valued character of k(p) defined by x - t(x-a(q-1 M) Let
03C8 be the additive character of k(p) defined by 03C8(x) = e p , and let G(~a)
be the (modified) Gauss sum - Ex ~a(x)03C8(x). Let f be the unique prime

lying over P in 0(ppm). Let am - M , where ~a~M is the residue
of a mod M. Then

where (p = e2ni/p.

PROOF: See ([9], p. 94).
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§3. Proof of the generalized Weil and Deligne theorems in spécial cases

PROPOSITION 3.1: If 0 = Ei La ri(a)[a]Nr is of Weil type, then J(03B8) takes
values in k.

PROOF: It clearly suffices to prove that J(0)(p) belongs to k where p is

prime. The first point to note is that JN(a, p) belongs to k(,up). This fol-
lows from the fact that JN(a, p) is the product JN(a, pi) over pilp in Q(03BCN).
We know that each JN(a, pi) is in Q(,upN) and, if a = ab E G(U(M,)10),
JN(03B1, pi)03C3 = JN(ab, pi) = JN(a, p03C3i).
Next we determine the action of (Z/pZ)x on J(03B8)(p). We have for

c ~ (Z/pZ)x and i = i JN(a, p)03C4 = t(c -’( q-1 N)JN(a, p)). . It follows imme-

diately that (J(03B8)(p))03C4 = t(c-r)J(03B8)(p), where rE7L/(p - 1)7L equals

03A3i03A3ari(a)03A3Gi/Di b(qi-1 Ni), where Di is the decomposition group of

a prime pi in Q(03BCNt) lying over p, qi is the norm of pi and b runs through
GilDi. Now

where c now runs through Gi. Note that

But by definition of Weil type, r is an integer divisible by (q - 1), hence

by (p - 1). Thus c - = 1, which completes the proof.

LEMMA 3.2: Let 0 be of Deligne type. Then
i) n( e) = 2 Li 03A3a~ 0 ri(a) # G N 1

ii) ~(03B8) = J(03B8)N-n(03B8) takes values in roots of unity in k on ideals a prime
to 03A0Ni.

PROOF: (i) We have n(03B8) = 03A3i E03B1 ri(a) 03A3b~ Ni for any 03C4 ~ G(k/Q).

Summing over T, we have:
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Since we may choose fi so that both fi and Ni - fi are in the set of fs,

and ~-i Ni~ + ~b(Ni-i~ Ni~ is equal to 1 unless a = 0, we obtain:

which gives (i).
(ii): We know by Proposition 3.1 that ~(03B8) takes values in k. We may

clearly assume that a is a prime ideal p not dividing n Ni, and that ri(O)
= 0, for all i. By Stickelberger’s theorem (Proposition 2.13) we have

(J(03B8)(p)) = pS(03B8), where S(03B8) = 03A3i03A3a ri(a)03A3b~GNi ~03C4-1. . We wish
to show first that ~(03B8)(p) is a unit. Clearly the only primes which divide
J(03B8)(p) are the conjugates of p. Also the exponent of 03C4-1p in J(03B8)(p) is

given by 03A3i03A3ari(a)03A3b~GNi~
-i Ni~

#Dp, where Dp is the decomposi-

tion group of p. By definition of Deligne type, this is n(03B8) # Dp. Since p is
unramified in k, the norm of 03C4-1p is p#Dp, so ~(03B8)(p) = J(03B8)(p)N-n(03B8)(p) is
a unit at 03C4-1p and hence a unit.

Since the absolute value of a Gauss sum over a finite field with q
elements is ql/2, we compute |J(03B8)(p)| = 03A0i03A0a(Np)1 2#GNirl(a), or (Np)n(03B8),
(by part (i)) for any absolute value. Hence |x(03B8)(p)| = 1 for any absolute
value, and ~(03B8)(p) is a root of unity by the Dirichlet unit theorem.

PROPOSITION 3.3: Let 0 be of Deligne type. Assume that:
i) K = k(0393*(03B8)) is an abelian extension of k.

ii) r*(lJ)w(k) E k, where w(k) is the number of roots of unity in k.
iii) k(0393*(03B8))/k is unramified at every finite prime not dividing N = il Ni.
iv) For all p prime to N, ~(03B8)(p) ~ (0393*(03B8))q-1 (mod f), where q = Np

and f is any prime dividing p in K. Then the generalized Weil and Deligne
theorems are true for 0; that is, J(03B8) is a Hecke character with values in k,
~(03B8) is a character of finite order, and ~(03B8)(p)(0393*(03B8)) = 03C3p0393*(03B8) for all p
prime to N. (Moreover, ~(03B8) is unramified outside of N, so the finite part of
the conductor of J(03B8) divides a power of N.)

PROOF: First assume q is odd. Let 03C3p be the Frobenius at p for the
extension K/k, so by definition 03C3p0393*(03B8) ~ 0393*(03B8)q (mod f) for any f lying
over p. Since q &#x3E; 1 and 0393*(03B8)q-1 is congruent to a unit mod p, 0393*(03B8) is a
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unit at f. Since 0393*(03B8)w(k) lies in k, 03C3p0393*(03B8)/0393*(03B8) is a root of unity of order
prime to p, lying in k. Now 03C3p0393*(03B8)/0393*(03B8) ~ (0393*(03B8))q-1 (mod f). So

~(03B8)(p) ~ 03C3p0393*(03B8)/0393*(03B8) (mod f) and since these are both roots of unity of
order prime to p, we obtain ~(03B8)(p)0393*(03B8) = 03C3p0393*(03B8).
Now consider the case when p divides 2. Since p is prime to N, N is

odd. Then w(k) only divides 2N, and not necessarily N, so we can
only conclude that ~(03B8)(p)(0393*(03B8)) = ± 03C3p0393*(03B8), or that ~(03B8)(p) =

± (0393*(03B8)03C3p-1).
On the other hand, by Weil’s theorem in the case of unmixed level N,

p ~ ~N(03B8)(p) defines a Hecke character for all p prime to N, as does
p ~ (0393*(03B8))N(03C3p-1) by class field theory. Since these are both Dirichlet
characters which agree on all primes not dividing 2N, they must also
agree on p, so xN(e)(p) = (0393*(03B8)(03C3p-1))N. Since N is odd, we conclude that
x(e)(p) = 0393*(03B8)03C3p-1 rather than - 0393*(03B8)03C3p-1.

Clearly X(O)(p) = 1 if 03C3p = 1 on K, hence X(O) is a Dirichlet character
of K/k and J(O) = ~(03B8)Nn(03B8) is a Hecke character. Since K/k is unramified
outside of N, the rest of the proposition follows.

It also follows readily that K is Galois over Q: We have already
remarked in the first paragraph of the proof of Proposition 3.1 that J(e)
is Galois-equivariant, i.e., that J(O)(p’) = a(J(O)(p». Since N is Galois-

equivariant, so is x. If we then, for any i in G(QjQ) define Xt by v’(u)
= 03C4(~(03C403C303C4-1)), it is a series of straightforward computations, using only
the formal properties of the Artin symbol, to verify first, that if x is

Galois equivariant X = ~03C4, second, that if G = Ker x, the kernel of ~03C4 is
G’ = {03C4-103C303C4:03C3~G}, and third, that the fixed field of G’ is Kt - 1. These
three facts immediately yield that K is Galois over Q.

THEOREM 3.4: Let N = lM, with l prime. Let a be any element of Z/NZ.
7hen the generalized Weil and Deligne theorems are true for the following
0’s, and k = Q(03BCM). Also, the conductor of J(O) divides a power of N.
1) l = 2, M odd, a even: 03B8 = [a]N - [a/2] M
2) l = 2, M even, a even: e = [03B1]N - 2[a/2]M
3) 1 is odd, 11M, lla: 0 = [a]N - l[a/l]M
4) 1 is odd, l  M, l|a:03B8 = [a]N + (1 - l)[a/l]M
5) 1 = 2, M odd, a odd:03B8 = [03B1]N - [M] N - [03B1]M + [2-103B1]M
6) l = 2, even, a odd : 0 = [a] N - [M/2] M - [a] M
7) l odd, l|M, l  a : 03B8 = [a]N - [a]M
8) 1 odd, l  M, l  a : 03B8 = [a]N - [a]M + [l-1a]M
9) 1 = 2, M odd: 0 = 2[M]N-
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PROOF: We check immediately that all of these 0’s are of Deligne

type, with n(03B8) = 0 in Cases 1-6, (l-1 2) in Cases 7) and 8), and [1] in
Case 9.

Case 1): Since JN(a, p) = JM(a/2, p) for all p prime in k, we obviously
have J(0) = 1. Clearly r*(0) = 1 also, and the Weil and Deligne
theorems are immediate.

Case 2): Let q be a prime in Q(03BCM). Suppose that q splits in Q(03BCN)
into q1q2. Then JN(a, q1) = JN(a, q2) = JM(a/2, q), so J(O) = 1. If q1 = q o N
is prime, then by the Hasse-Davenport Theorem (Proposition 2.12),
we have JN(a, ql) = JM(a/2, q)2, so again J(O) = 1. An immediate compu-
tation also shows that r*(0) = 1 in Rx/Qx.
Case 3): The argument here, using the Hasse-Davenport theorem, is

identical to that just used in Case 2).
Case 4): Let q be a prime in 0(pm) which is unramified in Q(03BCN). Let

q be a prime in Q(03BCN) lying above q and D the decomposition group of
q 1. Let f = #D, so that N(q1) = N(q)f. Then JN(a, q, k) = (by Hasse-

Davenport) JM(a/l, q, k)’- 1, since 1 - 1 0(pm)] and ab - a
(mod Z) for b E G(Q(03BCN)/Q(03BCM)). It follows that J(O) = 1. A simple cal-
culation also shows that 0393*(03B8) = 1 in Rx/Qx.

Case 5): Let q be a prime ideal of k, prime to N, and let 2b - a

(mod M). Then J(O)(q) = JN(a, q)JM(b, q)/JM(a, q)JN(M, q). But

JM(a, q) = JN(2a, q), and JM(b, q) = JN(a + M, q). So applying the

Hasse-Davenport distribution formula (Proposition 2.11) we obtain
J(O)(Q) = ~q,N(2)-2a = Xq,M(2)-a.
We have r(6) = r(a/N)r(a + M/N)/0393(a/M)0393(1/2), which is equal by

the Gauss multiplication formula (Proposition 2.9) to 21-2 - a/M203C0/03C0
= 21 - 03B1/M. Since r*(0) = r(0), we clearly have that 0393*(03B8) generates an
abelian extension K of k, unramified outside N, and 0393*(03B8)M ~ k.
Applying Proposition 3.3, we need only prove that J(03B8)(q) ~ r«())q-l
(mod q 1 ) where q 1 is a prime lying above q in K. This amounts to
showing that ~q,M(2)-a = 2-a(q-l)/M (mod q1), which is immediate from
the definition of ~q,M.
Case 6): Again let q be a prime ideal in k, and N q = q = pf. We first

consider the case when q splits in Q(03BCN). Recalling that in this case

03B8 = [a]N - [M/2]M - [a]M, we have J(03B8)(q) = JN(a, q1)JN(a + N, q1)/
JM(M/2, q)JM(a, q), where q 1 is either prime lying above q. But JM(M/2, q)
= JN(M, q1) and JM(a, q) = JN(2a,ql), so J(03B8)(q) = JN(a, q1)JN(a + N, q1)/
JN(M, ql)JN(2a, ql). Applying the Hasse-Davenport distribution formula,
we obtain J(03B8)(q) = ~q1, N(2)-2a = z,,M(2)-.
Now suppose that q remains prime in Q(03BCN). Let q 1 be the unique
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prime of Q(03BCNp) lying above q. By Stickelberger’s Theorem (Proposition
2.13), and replacing a by - a, we have

where 03C0 = y, - 1.

We first claim that SN(a) = SM(a) + SM(M/2). By definition:
i) SN(a) = 03A32f-1i=0 ai(N), where

ii) SM(a) = 03A3f-1i=0 ai(M), where

iii) SM(Mj2) = 03A3(f-1)i=0(p-1) 2 = 2 Let a’ = (a)N(q2 - 1)/N
and a" = ~a + M~N(q2 - 1)/N. Either ~a~N = ~a~M or ~a~N = ~a~M + M.
In the first case

In the second case

In this paragraph we will show that the last f digits of a’ are the same
as the first f digits of a". These last f digits of a’ are the first f digits

of ~a’q~q2 - 1. Now a" = a’ l (q2 - 1)/2, so a" = a’ + (2 (mod
(q 2 - 1)). On the other hand, a’q = a’ + a’(q - 1), while a’(q - 1)

= 
~a~N(q-1) M(q2-1 2) 

~ 
(q2 - 1 2) 

mod q2 - 1) since ~a~N(q - 1) M

is odd because q remains prime in Q(03BCN). So a" ~ a’q mod (q2 - 1), and
~a"~q2-1 = ~a’q~q2 - 1. But since a"  q2 - 1, a" = ~a"~q2 - 1, and we are
done.

So the collection {ai(N)} consists of the digits of ~a’~q and of ~a"~q.
Since a" = a’ + (q2 - 1)/2, 2a" = 2a’ T 1 (mod q). If ~a~N = ~a~M,
2a’ - ~a~M(q - 1)/M (mod q) and 2a" ~ 2a’ - 1 (mod q) so the set
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{~a’~q, ~a"~q} consists of bo and bl where 2bo ~ (a)M(q - 1)/M (mod q)
and 2b1 ~ (~a~M(q - 1)/M - 1) (mod q). Similarly, the same holds if

~a~N = ~a~M + M.
We are now in a position to apply Proposition 2.5, with 1 = 2 and a

replaced by (a)M(q - 1)/M. Part ii) of this proposition then shows that

But sN(a) = s( (a’)q) + s( (a")q) = s(bo) + s(bl). So sN(a) - sM(a) =
= s(-1/2) = s(q-1 2) = f (p - 1 2), and we have proved our original
claim.

It now follows that

and hence mod q, since both sides are in k.

The above argument also shows that 03B3(b0)03B3(b1) = YN(a). From the first
part of Proposition 2.5 we obtain

where c = ~a~M(q-1 M). . Since 03B3M(M/2)=03B3(q-1)/2=03B3(-1/2), we

conclude that J(03B8)(q) ~ 2~a~M(q-1)/M (modq). Switching a back to -a,
we obtain

We now compute r(0). By definition, this is (r(a/N)r(a + M)/N)/
(T(a/M)0393(1 2)), which is equal by the Gauss multiplication formula to
21 2-aM(203C0)1/2/03C01/2=21-a/M. Since n(03B8)=0, we have ~(03B8) = J(03B8) and

0393*(03B8) = 0393(03B8). But since 2q-1 ~ 1 (mod q), we have ~(03B8) ~ 0393(03B8)q-1
(mod q), and, arguing as in Case 5), the hypotheses of Proposition 3.3 are
satisfied and the Weil and Deligne theorems are true for 0, with J(0) =
= x(0) so J(03B8)(q) = ~q, M(2)-a.
Case 7): Again q is a prime ideal in k, and Nq = q = pl. We have

03B8 = [a]N - [a]M, so J(03B8)(q) = JN(a, q)/JM(a, q). We compute J(0)(q)
first in the case when q splits completely in Q(03BCM). Then J(03B8)(q) =
= 03A0l-1i=0 JN(a + iM, q’)/JN(la, q’), where q’ is any prime lying over q in
Q(03BCN). Using the Hasse-Davenport distribution formula, we see that
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J(03B8)(q) = 03A0l-1i=0 JN(iM, q’)~q’, N(l)-la. Since n(03B8) = l-1 2, ~(03B8) = J(03B8)N- (l-1 2).
But now JN(iM, q’)JN(-iM, q’) = ~q’, N(-1)iM·Nq, and ~q’, N(-1)iM =
(-1)iq-1 l) = 1 since q - 1 is even and 1 is odd. So 03A0l-1i=0 JN(iM, q’)
= (Nq)(l-1)/2, and

Now consider the case when q does not split in O(03BCN). 03C0 = e203C0i/p - 1,
and q be a prime lying over q in Q(03BCNp). Replacing a by - a, and using
Stickelberger’s theorem, we obtain

We proceed as in Case 6). Let aN = ~a~N(ql - 1)/N and aM =

= ~a~M(q - 1)/M. Let aN(i) = ~a + iM~N(ql - 1)/N for i = 0,..., 1 - 1.

We stop to prove:

LEMMA 3.5: The digits in the p-adic expansion of aN are the same as
the disjoint union of the digits in the p-adic expansions of ~aN(i)~q for
i = 0,1,...,l - 1.

PROOF: The digits of aN can be divided naturally into 1 parts each

digits of (~aNqi-1~ql-1)q. So we need only show that the collection
{aNqi-1} mod ql - 1 is the same as the collection {~a + iM~N(ql - 1)/N}.
Now since q remains prime in Q(03BCN), q generates
G(Q(03BCN)/Q(03BCM)). Thus {aqi-1} mod N consists of elements bi mod N
such that bi = a (mod M). So the collection {aNqi-1} mod (ql - 1) con-
sists of elements ci mod (ql - 1) such that ci = bi(ql - 1)/N, bi --- a (mod
M). But this last collection is clearly the same as {~a + iM)N(ql - 1)INI,
which proves the lemma.

We now wish to relate these digits to the digits of aM.

LEMMA 3.6: The collection {~aN(i)~q} is the same as the collection

{b(j, aM)} as in Proposition 2.5.

PROOF: There exists a unique i such that ~a + iM)N  M. Replacing
a by a + iM, we may assume that (a)N  M, i.e., that a  M. Then

~a + iM~N = a + iM and ~aN(i)~q ~ aM/l - i/l (mod q). So l(aN(i)q ~
aM - i, and ~aN(i)~q = b(i, aM).
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COROLLARY 3.7: s,(a) - (1- 1 ) 
PROOF: We have just seen that SN(a) = LY:Õs(b(j,aM)). Hence by

Proposition 2.5, sN(a) - sM(a) = 03A3l-1j=0 s(b(j, 0)) - s(O). Now bU, 0)

= (q-1 l)j. . So, combinin g the terms of j and 1 - j, s(q-1 l)j +

+ s(q-1 l (l-j)) = s(q - 1) = (p - 1)f, hence sN(a) - sM(a) = (p -

- 1)f(l - 1 2).
So we have now

But by Proposition 2.7, nP-l/p== -1 (mod n), hence mod q 1 so the

desired congruence holds mod q1, and hence mod q.

PROOF: It follows from Lemma 3.6 that ym(a)IYN(a) =
= 03B3(~a~M)/03A0l-1j=003B3(b(j, ~a~M)). By Proposition 2.5, this equals
(03B3(0)/03A0l-1j=0 03B3(-j))l~a~M (mod q). Using Lemma 2.4 we get 03B3M(a)/03B3N(a) ~

(-1)f(l-1)/2[q l]l~a~M (mod q), which is the lemma.
Reversing a and - a again we obtain: X(O)(q) ~ [q l]l-~a~M (mod q).

Now since 11 M, ll(q - 1), so q = 1 (mod 1).
Hence again X(o)(q) = ~q,M(l)-a (mod q). We now compute r(0).

Choosing 0  a  N,

by the Gauss multiplication formula. So
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Thus

Clearly r*(0) generates an abelian extension of k, and (0393*(03B8))w(k) lies in

k. Now K c k(l-1/M, l1 2i(l-1)/2). It is immediate that k(M) is unramified
outside N, and k(lti(l-1)/2) = k(l) if 1 ~ 1 (mod 4) and k(-l) if 1 ~ 3

(mod 4), so unramified over k outside 1 in either case. We again con-
clude, using Proposition 3.3, that the Weil and Deligne Theorems hold
for0.

Case 8): Again q is a prime ideal in k, and Nq = q = pl. In this case
03B8 = [a]N - [a]M + [l-1a]M. So for q prime to N we have J(0)(q)
= JN(a, q)JM(l-1a, q)/JM(a, q) and ~(03B8)(q) = J(03B8)(q)q-(l-1)/2.
We first consider the case when q splits completely in Q(03BCN), and

let q’ lie over q. Then J(03B8)(q) = 03A0iJN(a + iM, q’)JM(l-1a, q)/JM(a, q),
where in the product 0:::; i ~ 1 - 1 and l  a + iM. But then

03A0iJN(a + iM, q’)JM(l-1 a, q) = 03A0l-1i=0JN(a + iM, q’). Applying the Hasse-
Davenport distribution formula, we get:

Hence ~(03B8)(q) = ~q’, N(l)-la03A0l-1j=0JN(iM, q)q-(l-1)/2. But exactly as in

Case 7, we have

so X(8)(q) = ~q’,N(l)-la = ~q, M(l)-a.
We next consider the case when q does not split completely in Q(03BCN).

Let Dq be the decomposition group of q, and let g &#x3E; 1 be the degree of
the residue field extension over q. So g|(l - 1). Let q’ be a prime lying
over q. Then J(03B8)(q) = fli JN(a + iM, q’)JM(l-1a, q)/JM(a, q) where i runs

over a set I maximal with the following properties:
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1) 0 E l

2) l  a + iM
3) a + iM and a + jM belong to distinct orbits of the action of Da on

(7L/ N7L) if i :0 j.
So in particular I has cardinality (1 - I)lg. Let aM = (a)M(q - I)IM,

aN = ~aN~(qg - 1)/N, and aN(i) = ~a + iM~N(qg - 1)IN, i = 0,...,l - 1.

LEMMA 3.10: Fix i E I. The digits in the p-adic expansion of aN(i) are the
same as the disjoint union of the digits in the p-adic expansion of
{~aN(j)~q} as j ranges over a maximal set such that a + iM and a + jM
belong to the same orbit of D..

PROOF: The proof is similar to the proof of Lemma 3.5 and is left to
the reader.

LEMMA 3.11 : The collection {~aN(j)~q} for j = 0,...,l - 1 is equal to the
collection bU, aM) as in Proposition 2.5.

PROOF: aN(j) = (a + jM~N(qg - I)IN. We may assume 0  a  N. Let

k be such that a + jM  N for j = 0,..., k and 2N &#x3E; a + jM ~ N for

j = k + 1, ...,l - 1. Then aN(j) ~ aN - j/l (mod q) if j ~ k and aN(j) ~
aN - j/l + 1 (mod q) if j ~ k. It follows that the aN(j) are the collection
bU, la N + l - 1 - k). But we see easily that laN + 1 - 1 - k am (mod q),
which proves the lemma.

LEMMA 3.12: Let j be such that (a + jM)N is divisible by 1. Then

(aN(j))q = (l-1a)M.

PROOF: The above equality is equivalent to l(aNU)q == aM (mod
(q - 1)). (Since l  M, and since q does not split completely in Q(03BCN),
q ~ 1 (mod 1) and 1 is prime to q - 1.) Now

and 0 ~ (a + jM~N  N, 1 ) ~a + jM~N and + jM~N = ~a~M (mod M).
Thus we may apply Proposition 2.8 with a = ~a~M and b = ~a + jM~N
to deduce the result.

It now follows as before from Stickelberger’s theorem, (switching a to
- a) that:
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where q" is the unique prime of Q(03BCNp) lying over q’. Using the above
lemmas, we see that

Suppose that x = bU, 0) so lx == - j (mod q). Then 1(q - 1 - x) ==
- (l - j) (mod q) so bU, 0) + b(l - j, 0) = q - l, and it follows that

So

Since ~(03B8)(q) = J(03B8)(q)q-(l-1)/2 we have, using Proposition 2.7,

and hence mod q. Now using Lemmas 3.8, 3.9, 3.10 and Proposition 2.5,
we obtain:

Switching back from a to - a we conclude that



74

We now compute F(O). Choosing a such that 0  a  N, 0393(03B8) =
= nir«a + iM)/N)0393((a + jM)/N)r(a/M), where i runs over the set of

integers between 0 and 1 - 1 such that l  a + iM and j is such that

lia + jM. So

by the Gauss Multiplication Formula. So

Therefore

So 0393*(03B8)q-1 = X(o) (mod q) and, as in Case 7 by Proposition 3.3,
Weil’s and Deligne’s Theorems hold for 0.

If the reader has successfully struggled through Cases 1-8, he should
have no problem with Case 9.

It remains to prove the statement about the conductor. It follows

immediately from Proposition 3.3 that in every case, the finite part of
the conductor divides a power of N, so we need only show that J(O) is
unramified at oc. For cases 1-6, n(O) = 0, and 0393*(03B8) = T(e) is real, so X(O)
is unramified at oo, and we are done. In case 7, k = Q(03BCM) must be
imaginary, since M ~ l ~ 3. In case 8, we may assume M = 1 or 2, i.e.,
k = Q. If l ~ 1 (mod 4), then n(O) is even and X(O) corresponds to 0(.,//î)
so J(O) is unramified at ce. If 1 ~ 3 (mod 4), n(O) is odd and X(O) corre-

sponds to Q(-l), so again i(o) is unramified at oo. In case 9, n(O) is 1

and X(O) corresponds to Q(-1), so again J(0) is unramified at oo.

§4. Proof of the generalized Weil and Deligne theorems

We begin by proving the generalized Weil and Deligne theorems for
the special O’s of the last section, but where we let k be any subfield of
Q(03BCM). Throughout this section G will denote G(Q(03BCM)/k) c (Z/MZ)x. In
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cases 1-4, it is easy to verify that v(O) = J(O) = 1 and 0393*(03B8) = F(O) = 1 in
Rx/Qx, so we confine our attention to cases 5-8. We begin by proving.

LEMMA 4.1: 0393*(03B8) generates an abelian extension of k, unramified out-
side N, and 0393*(03B8)w(k) lies in k.

PROOF: We begin by showing that F*(O) generates an abelian exten-
sion of k. Let G = G(Q(,uM)/k). In cases 5 and 6, we have 0393*(03B8) =
= 2[Q(03BCM):k]2- 03A3b~G ab/M. In cases 7 and 8

Since i and l1 2 generate abelian extensions of k, we are immediately
reduced to showing that l 03A3b~G ab/M generates an abelian extension of k. Let
e in 7L/ M7L be defined by e = 03A3b~Gb. Then k(l03A3ab/M)/k is abelian exactly
when k contains the (M/e)-th-roots of unity. Let ( be a primitive M-th
root of unity. Then 03B6e = NQ(03BCM)/k(03B6) is in k and is a primitive (M/e)-th
root of unity, so k(0393*(03B8) is abelian over k. To see that 0393*(03B8)w(k) lies in k,
since w(k) is even it is enough to verify that (lea/M)M/e is in k, which is
clear.

We have immediately that k(0393*(03B8))/k is unramified over k outside of

2N, but since k((- i(l-1)/2l1 2) = k(l) if 1 ~ 1 (mod 4) and k(-l) if

1 ~ -1 (mod 4) we see that if 2  N k(0393*(03B8)/k) is unramified at 2.

THEOREM 4.2: The Generalized Weil and Deligne theorems are true for
the (J’s of the last section, and any k c (!J(,uM), and the conductor of J(0)
divides a power of N.

PROOF: Let q be a prime ideal of k, with Nq = q. We have only to
prove that 0393*(03B8)q-1 ~ ~(03B8)(q) (mod q). If we write 03B8 = 03B8(a, k), it is im-

mediate that 0393*(03B8(a, k)) = 03A0b~G0393*(03B8(ab, Q(03BCM)) so

Let us first consider the cases when 1 is odd. Then

So
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Thus

By Proposition 2.6, we have

Hence

Let us now compute X(8) (q). Analogously to the above, we have:

where q* is a prime in Q(03BCM) lying above q and D is the decomposition
group of q in G. Then we have previously seen that

where qg = Nq*.

since Eb~Db = 1 + q + ... + qg-l = (qg - 1)/(q - 1).
Since both sides of the congruence lie in k, the congruence holds

modulo q as well as q*, and 0393*(03B8)q-1 ~ ~(03B8) (mod q), Hence by Proposit-
ion 3.3, and Lemma 4.1, Weil’s and Deligne’s theorems are true for 0,
and the finite part of the conductor of J(0) divides a power of N.

It remains to check once again that J(0) is unramified at oo. In cases
1-4, n(O) = 0 and 0393*(03B8) = 1, so there is no problem. For cases 5-9, we
may clearly assume k is real. Since n(O) = 0 in Cases 5 and 6,

l-1 2[KM : k] in Cases 7 and 8, and [KM : k] in Case 9, n(03B8) is always
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even unless KM = Q, when k must be KM. But we have treated this case
in the last section, so we may assume n(03B8) is even, and show that

k(0393*(03B8))/k is unramified at 00.
Using the notation in the proof of Lemma 4.1, since k is real, M/e

must be 1 or 2 and [KM : k] is even. Hence, up to a rational number,

r*(0) = 1 or -v1, and k(0393*(03B8)) is still totally real, so we are done.
The cases when 1 = 2 are similar to the above and left to the reader.

REMARK 4.3: We have proved that, for all of our special 0’s, and for
any k c Q(03BCM), the function on ideals prime to N defined by p ~ J(03B8)(p)
is a Hecke character of conductor dividing a power of N, of the form
~(03B8)Nn(03B8), and that for p prime to N, (~(03B8)(p))(0393*(03B8)) = 03C3p(0393*(03B8)).
We now are ready to complete the proof of Theorems 1.5 and 1.6 (the

generalized Weil and Deligne theorems).

PROOF OF THEOREMS 1.5 AND 1.6: Let 03B80=03A3si=103A3ari(a)[a]Ni be of
Weil type, with respect to k c KNi for all i. Let K f be the minimal
cyclotomic field containing k, so that Kf ~ KNi for all i. If all the Ni are
odd, we may assume that f is odd, and if any Ni is even, we may assume
that f is even. If f is even, and some Ni is odd, we may replace Ni by
2Ni, since J(La ri(a)[a]Ni - La ri(a)[2a]2Ni) is the trivial character and

0393*(03A3ari(a)[a]Ni - La ri(a)[2a]2Ni) = 1. So we may assume that f divides
each Ni.
We proceed by induction on the number t of Ni’s ~ f. If t = 0, all Ni’s

are equal to f, and we are in the case already proved by Weil. If t =1= 0,
we induct on the number of prime factors of any Ni/f ~ 1. So let

00 = 01 + 03B82 where 03B81 = 03A3s-1i=103A3ari(a)[a]Ni and 03B82 = 03A3ar(a)[a]NS, NS,
NS = lM, f 1 M. But using Theorem 4.2, we may always write 02 as 03B83
+ 03B84,
where e3 = La r’(a)[a]M and 03B84 is an integral multiple of one of the
relations in Theorem 4.3, involving only M and N,. Since (J 4 is of Weil
type, el + 03B83 is of Weil type. By the induction hypothesis, Weil’s

theorem is true for 03B81 + 03B83, and by Theorem 4.2 it is true for (J4. Since
J(03B8), X(O) and 0393*(03B8) are all multiplicative in 0, Weil’s theorem is true for
00. li we assume that 03B8o is of Deligne type, then the above argument
also shows that Deligne’s theorem is true for 0.

§5. Deligne’s theorem for k c Q(03BCp)

In this section we show how the methods of this section yield a proof
of Deligne’s theorem ab initio in the case when k c Q(up).
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We begin with some notation. If 03B8 = 03A3as(a)[a]p, let  =

= 03A3a03A3bs(a)[ab]p, where b runs through G = G(Q(03BCp)/k) ~ (Z/pZ)x. We
may write  = 03A3ara[a]p, where ra = LbeGs(ab-1) has a constant value
r(O) on fixed orbit 0 of G. So we may also write  = 03A3or(O)03A303B3~o[03B3]p,
where ra = r(0) if a E 0.

LEMMA 5.1: Deligne’s theorem is true for k c Q(,up) and N = p.

PROOF: We first claim that if 0 is of Deligne type, ra = rp-a for

1 ~ a ~ p - 1.
If k is real, -1 is in G, and so autornatically ra = rp-a. So we may

assume k is imaginary. By definition of Deligne type,

03A3or(O)03A303B3~o~-03B3c p~ is an integer independent of c, where 0 runs

through the orbits of G. Let W be the space of La ra[a] p such that ra is
complex and constant on G-orbits. So 03B8 ~ W ~ 03B8 = 03A3or(O)03A303B3 ~ O[03B3]p.
Let R z W be the subspace consisting of all 03B8’s such that

03A3Or(O)03A303B3~O p Yc is independent of c.
We define a linear map ~:W ~ W by ~(03A3or03A303B3~0[03B3]p) =

= 03A3c03A3Or(O)03A303B3~0~-03B3c p~ [CI.

If we let L1 c W be generated by La Mp, then R is exactly ~-1 (0394). Let
x be a character of G(k/Q), viewed as a character on (Z/pZ)x which is
invariant under the action of G. Let Ax be the vector 03A3a~(a)[a]p =
= Lo x(O) 03A303B3~0 [03B3]p, clearly A. lies in W. If X is non-trivial,

If is trivial, 4J(A) = (p 2 1) Y, [c]. So, by the theorem on linear in-
dependence of characters, we have dim (lm 4J) ~ 1 + 1 2 [k : Q]. Since

dim W = [k : Q], and Im ~ ~ L1, dim R ~ 1 2 [k : Q].

For 1 ~ a ~ p - 1 2. Let Va be the vector L rb[b]p in W where rb = 1

if b is in the same G-orbit as a or p - a and 0 otherwise. It is immediate

that there are 1 2[k: Q] distinct V,,’s, and that these are linearly inde-
pendent and lie in R. Hence they span R. and if 0 = 03A3ra[a]p is any
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vector in R, we must have ra = rp _ a. If 0 is of Deligne type 03B8 is in R, and
we have demonstrated our claim.

It is also immediate that the Va’s are in fact of Deligne type, and hence

any 0 of Deligne type is a linear combination of the Va’s with integral
coefficients. So to complete the proof, we need only show that Deligne’s
theorem holds for va.
Now

in Cx/Qx. Since

If we let ~a = e 03C0ia p - e -03C0ia p in Q(up) then

Hence 0393*(Va) = (203C0i)-#G0393(Va) = NQ(03BCp)/k(~a) lies in k.
To check Deligne’s theorem, we need only show that v(O) is trivial.

But ~(03B8) = J(03B8)N-#G, and since J(a, f)J(p - a, f) = N f for any prime
ideal f of Q(up), it follows easily that J(O) = N#G and ;«0) is trivial.

LEMMA 5.2: Deligne’s theorem is true for k z Q(up) and N = 2p.

PROOF: let 0 = 03A3ar(a)[a]2p be of Deligne-type. Then

which we may write as 0 = 81 + 03B82 + 03 + 04 + Os. Now 01 and 03 are
of Deligne type and Deligne’s theorem is true for them by Theorem 3.4.
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Since 0 is of Weil type, 03A3ar(a)03A3bab 2p ~ Z, where b runs through

G(Q(03BC2p(k)) ~ (Z/2p)x. Hence La r(a) Lb ab ~ 0 (mod 2), which implies
Zaodd r(a) 03A3bb ~ 0 (mod 2). But since all the b’s are odd, Lb b ~ #G (mod
2), and 03A3a oddr(a)#G is even. By Theorem 3.4, case 9, 03B85 is of Deligne
type and Deligne’s theorem is true for it. Hence 02 + 01 is of Deligne
type. But by Lemma 5.1, Deligne’s theorem is true for 03B82 + 03B84, hence
Deligne’s theorem is true for 0.

THEOREM 5.3: Deligne’s theorem is true for k ~ (f)(,up) and any 0.

PROOF: The proof of Theorems 1.5 and 1.6 in §4 immediately reduces
the general Deligne’s theorem for k to Theorems 5.1 and 5.2.

§6. The Gauss sum identities of Langlands

In this section we show that the Gauss-sum identities of Langlands
[10] may be derived from the main theorem of this paper. We begin by
stating the first Langlands identity:

THEOREM 6.1 (Langlands): Let F1 and F2 be two finite fields, F2 con-
taining F1. Let F 1 have q elements and F2 have qf elements, and let 1 be a

prime with (1, q) = 1 such that the order of q mod 1 is equal to f Let T be a
set of representatives for the orbits of non-trivial characters of F2 of order
1 under the Galois group G(F2/F1). Let p be a character of Fx. Then:

(Here N denotes the norm from F2 to F,).

REMARK 6.2: If f = 1, this reduces to the Hasse-Davenport distribu-
tion formula (Proposition 2.10). This is always the case when 1 = 2.

REMARK 6.3: In Langlands’ statement, the "6(h)" is on the other side
of the equation; this is because he calls G(p) what we call G(03C1-1).

PROOF OF THEOREM 6.1: We may assume that f &#x3E; 1, since we are

taking the Hasse-Davenport distribution formula as known. (The
methods of this paper also yield a new proof of the distribution formula,
which we leave to the reader.) Let M = q - 1, and N = lM. Since f &#x3E; 1,
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l  M. We may clearly identify our field FI with a residue field of the

ring of integers in Q(03BCM) at a prime p, and our character p with

a = ~a(q-1)/Mp for a suitable a in (Z/MZ)x. Choose b~Z/NZ such that
l  b and b = la (mod M). We may assume by Remark 6.2 that 1 is odd,
and we let k = Q(03BCM), and 0 = [b] N - [b]M + [l-1b]M - [M] N.
By case 8 of Theorem 3.4 with a = M, we see that 0’ = [M]N is of

Deligne type, with n(O’) = (1 - 1)/2, and Deligne’s theorem is true for it.
Hence, again by case 8 of Theorem 3.4, Deligne’s theorem is true for 0,
and n(O) = 0, r*(0) = F(O). Deligne’s theorem for 0, at the prime p,

translates into:

where

On the other hand, using the proof of case 8 of Theorem 3.4, F(O) is
immediately computed to be l-b/M E IRx/QB while Langlands’ result as-
serts that ~(03B8)(p) = P -1(1’) = ~-ap(ll) = X;b(l). Since M is prime to q, it is
enough to check that 03C3p(l-b/M) ~ ~-bp(l)-b/M (mod V) or that

l(q-1)(-b/M) ~ ~-bp(l) (mod p). Since M = q - 1, this is clear.
We now come to the second Langlands identity:

THEOREM 6.4 (Langlands): Let F1 be a fznite field with q elements and
let F2 be an extension of FI of degree 1 where 1 is a prime dividing q - 1.

Suppose p is a character of Fx whose restriction to the 1-th roots of unity is
non-trivial and 03C8 is a character of F2 such that p 0 N. If T is the set
of non-trivial characters of Fx of order l, then

PROOF: We start with the following lemma:

LEMMA 6.5: Let 11 M and 0 = 03A3l-1i=1 [iM/l]M. Then 0 is of Deligne type,

n(O) = 1 - 1 2, F(O) = (203C0)(l-1)/2l-1/2, and Deligne’s theorem is true for 0.

PROOF OF LEMMA: We may rewrite 0 as 03A3(i-1)/2i=1 ([iM/l]M + [(l -
- i)M/l]M). These are all expressions of the type [a]M + [M - a]M,
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a e 0, so we may assume 0 has this form. Then immediate calculations

yield first that 0 is of Deligne type with n(O) = 1 and next that 0393*(03B8)
= (sin(03C003B1/M))-1. Note that we may write (sin(03C003B1/M))-1 as ce-03C0ia/M
where c is a non-zero element of k = Q(03BCM), and a unit away from
primes dividing M.
On the other hand, J(O)(p) = G(~ap)G(~-ap) = ~p(-1)aNp, by standard

properties of Gauss sums. So X(O)(p) = (-1)a(q-1)/M, where q = Np.
Since cq-1 = 1 (mod p) 0393*(03B8)q-1 ~ e-03C0ia(q-1)/M ~ (-1)a(q-1)/M (mod p),
so an application of Proposition 3.3 completes the proof.

REMARK: This result has also been demonstrated by Gross and
Koblitz [11] but we give a proof here for the sake of completeness.
We now resume the proof of the theorem. We proceed as in Theorem

6.3. Let M = q - 1, N = lM, p = a = X:(q - 1)/M, and 0 = [a] N - [a] M
- 03A3l-1i=1 [iM/l]M. By Lemma 6.5 and Case 7 of Theorem 3.4, Deligne’s
theorem is true for 0, and we see that n(03B8) = 0, f*(6) = I’(0), and r(o)
= II-a/M. Theorem 6.4 can now be restated as J(O) = p-1(l). Since both
sides are roots of unity, it succès to verify this mod p. But by Deligne’s

theorem. J(e) - 1 M = l-a/M (mod p) and 03C1-1(l) ~ l-a/M (mod p) by
definition, so we are done.

Appendix - by Daniel S. Kubert

Generalized Gauss Sum Identities

We now show how Proposition 2.10 and the two Langlands’ identities
may be viewed as special cases of a more general identity on Gauss
sums. Conversely it seems likely that this generalized identity may be
obtained from the three identities above and possibly also Proposition
2.12 but an inductive proof does not appear to be straightforward.

Let M, m ~ Z, M &#x3E; 1, m &#x3E; 1. Let a E Z/MZ - (0). We construct a 0 of
Deligne type such that the corresponding f-factor is

For each b let N(b) be minimal such that
1) bN(b) E Z
2) M divides N(b)
We define N(c) in the same manner.
Suppose 03C3 ~ Gal(Q(03BC(N))/Q(03BC(M))). Then mo-b = a since 03C3 ~ 1(M) and



83

clearly N(6b) = N(b). We wish to show that the set of b’s with fixed
N(b) can be written as a disjoint union of sets of the form

(ab, 03C3 E Q(03BC(N(b))/Q(03BC(M))}. We require the following lemma.

LEMMA: Let 03C3 E Gal Q(03BC(N(b)))/Q(03BC(M))) such that 6b ~ b mod Z. Then
6 is trivial.

PROOF: By assumption M divides 6 - l, and we wish to show that
N(b) divides 6 - 1. Now (6 - l)b E Z by assumption, so 6 - 1 satisfies

properties 1), 2) above and is therefore divisible by N(b) by definition.
Thus 6 is trivial.

We now construct a 0 with the desired properties.
For each N which is divisible by M we consider the set B(N) =

= b E Q/Z, mb = a M, N(b) = N . For most N, B(N) will be empty. If
not we partition it into sets of the form {03C3bi, 03C3 ~ Gal Q(03BC(N))/Q(03BC(M))}
where i ranges over an index set I1(N). We also create sets C(N) =
= {c ~ Q/Z - 0, mc = 0, N(c) = N} and partition them over 12(N) as
above. We then define 0 by

where 0 is considered with respect to the field Q(M,). Then we claim

PROPOSITION: (i) 0 if of Deligne type with n(03B8) = 0

PROOF: Part (ii) of the proposition is clear from construction. Part (i)
is also easy. We first show that

Therefore the above sum equals m a a ~ Z.
mM M
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To complete the proof of the proposition we must show that n(O) = 0.
Now

and since 03A3b(b) - (a M) and 03A3c(c) are distribution relations we getb Af c

We now may prove the generalized Gauss sum identity.

Let m ~ Z, m ~ 1. Let p be a rational prime (p, m) = 1 and q a power of
p. Let 0 be a character on FQ. Let gi be a character on Fq , q’ - qr, such
that t/Jm = cp 0 Nq’/q where Nq’/q is the norm from Fq, to Fq. Moreover let
03C8 be primitive in the sense that 03C8 ~ 03C81 03BF Nq’/q" where q" - qs, sir and 03C81
is a character on F*q". If 03C8 satisfies 03C8m = cp 0 Nq’/q we can always find a
primitive character 03C81 associated to it. For if 03C8 = 03C81 03BF Nq’/q" where
q" ~ q’ then 03C8m1 = ~ 03BF Nq"/q since the norm map is onto and Nq’/q =

= Nq’/q" 03BF Nq"/q. So there are m primitive characters gi such that

03C8m = ~ 03BF Nq’/q. Let u E Gal(Fq./Fq). Then if 03C8 is primitive, so is 03C803C3 and
we consider 03C8 and gi" to be conjugate characters. In the case when 0 is
the trivial character on F:, we write x instead of 03C8. Then we have

THEOREM (generalized Gauss-sum identity):

I n the above formula X and 03C8 range over primitive characters in the above
sense. Moreover only one character in each orbit of Galois conjugates is
taken.

PROOF: In the case when 0 = 1, G(~) = 1, 0(m) = 1, and the equality
is clear. So suppose 0 * 1. Set M = q - 1. Let p be a prime in Q(03BC(M))
lying above p E Q. Then 0 == 03C9a/M(q-1) for some a E Z/MZ - (0). We now
apply the Generalized Deligne’s Theorem, Theorem 1.6, to the 0 con-
structed above at the prime p. We first calculate T(03B8) using Proposition
2.9, the Gauss multiplication formula.
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We must now calculate J(O). Given b such that mb = a/M, consider

JN(b)(bN(b), p). Let D be the decomposition group of a prime p’ of

Q(03BC(N(b))) over p in Q(03BC(M)). Let q’ be the

reduction

norm of p’. Let {03C3} be a set of coset representatives for G/D where G =
= Gal Q(03BC(N(b)))/Q(03BC(M)). Then JN(b)(bN(b), p) equals 03A003C3JN(b)(03C3bN(b), p’).
We first must show that each term JN(b)(03C3bN(b), p’) equals G(03C8) where

03C8 : F*q’ ~ C and 03C8 is primitive, 03C8m = ~ 03BF Nq’/q. We may clearly suppose
that 03C3 = 1 for this. If w is the Teichmuller character associated to p’
then 03C8 = 03C9b(q’-1). Suppose then that 03C8 is not primitive, 03C8 = 03C81 03BF Nq’/q"
where q" = qS, q’ = qr, s 1 r. Now q’ is minimal such that N(b)|q’ - 1.
Suppose .pI = 03C91b1(q"-1) where b1(q" - 1) ~ Z. Then gi = Wbl(q’-1). Thus
b = bl (mod Z). Thus b(q" - 1) ~ Z, Mlq" - 1 since M = q - 1. Hence
N(b)|q" - 1 since N(b) is minimal satisfying (1) and (2) above. Hence
q" = q’ and 03C8 is primitive as claimed. Finally 03C8m = wmb(q’ -1) = Wa/M(q’ -1) 

= 4JONq’/q.
Next we show that the map 03C8 : (b, 6) ~ 03C8 is injective into primitive

characters mod Galois conjugation by D. We first show that, if N(b1)
and N(b2) are distinct then the images of b1 and b2 are distinct under 03C8:
For if N(b1) and N(b2 ) are distinct the denominators of b 1 and b2 are
distinct. But 03C8(bi, ai) has order equal to the denominator of bi. Therefore
the two characters are not in the same orbit under the action of D.

Hence we may assume that N(bl) = N(b2). It clearly suffices also to

assume that 03C3i = 1 for i = 1, 2. We must show that if 03C8(b1) and 03C8(b2)
belong to the same D orbit then b and b2 belong to the same D orbit.
Let q’ be minimal as above such that N(bl) = N(b2) divides q’ - 1. Then
03C8(bi) = 03C9bi(q’-1). 03C8(b1) and 03C8(b2) belong to the same D orbit if and only
if 3t e Z s.t. (qtb1 - b2)(q’ - 1) ~ 0(q’ - 1). But this is equivalent to qtb1
= b2 (mod Z). Hence b1 and b2 belong to the same D-orbit and 03C8 is

injective. Finally we must show that 03C8 is onto. Suppose we are given 03C8
= 03C9b(q’-1) with b ~ Q/Z and q’ - qr such that 03C8 is primitive. This means
that q’ is minimal such that q’ is a power of q and b(q’ - 1) ~ Z. Then we
may choose N(b) minimal such that M 1 N(b) and bN(b) E Z as before.
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Then N(b)|q’ - 1 since Mlq’ - 1 and b(q’ - 1) ~ Z. Then q’ is the mini-
mal power of q such that N(b)|q’ - 1 since bN(b) E Z. Hence 03C8(b,1) = 03C8
whlch’ proves that 03C8 is onto.

In the above argument if a happened to be 0 we would get a map
~:(c, 03C3) ~ ~ which is 1-1 and onto and where x is primitive such that
x. = 1.

We now may calculate J(O). By definition

Now by choice of a, JM(a, p) equals G(~). By the above discussion

where x can be considered to range either over the set xm - 1 or the set
~m = 1, ~ ~ 1 since G(l) = 1. Hence

Now applying the generalized Deligne’s Theorem we know that J(O)
equals 0393(03B8)Frob(p)/0393(03B8).
Now 0393(03B8) = m-~a M~. So

But this equals ~-1(m) by the definition of 0. Hence J(03B8) = ~-1(m)
which completes the proof of the theorem.

Finally we note that this generalized identity has been independently
discovered by Greg Anderson in the case that the rational prime p is not
2. His unpublished proof is based directly on Stickelberger’s Theorem.
Moreover recently Evans has produced some generalizations of Lang-
lands’ identities. These are easily seen to be special cases of the gen-
eralized identity above as are the Langlands’ identities themselves.
For in conclusion we note when m = 1 a prime, (1, p) = 1 we recover

the Langlands’ identities or the Hasse-Davenport distribution identity
with 1 prime depending on whether l divides q - 1 and 0 has order



87

divisible by 1 in which case we get the Hasse-Davenport distribution
identity, or 1 divides q - 1 and 0 does not have order divisible by 1 in
which case we get Langlands’ second identity or 1 does not divide q - 1

in which case we get Langlands’ first identity.
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