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OPEN SUBSETS OF FIBRATIONS

J.F. McClendon

Suppose T — B is a fibration and E is an open subset of T. In general,
of course, E — B will not be a fibration. However under certain special
circumstances it will be and the purpose of the present paper is to pro-
vide sufficient conditions for this to be the case. Actually, the main re-
sults treat a slightly more general situation. If Ec W < T and a map
q:T — B is given then say that E is a B-retract of W if there is a map
r:W — E with ri = id (where i: E - W) and gr = q. The case studied
here is when E is a B-retract of an open set of T. Two results treat a
general map E — B (without reference to T).

There are some results in the literature (e.g. [11, Prop. 4.1], [12, Cor.
8.4], [4, Th. 3], [6, Th. 1]), giving sufficient conditions for E — B to be a
fibration. These usually put a completeness condition on E or the map
E — B. The result here is of a different nature (E may be open in T, so
needn’t be complete). The main theorem (section 2) calls for relations
between the homotopy of the fibers of E and T and requires some pre-
liminary definitions (section 1). Two useful special cases can be stated
here.

3.1. CorROLLARY: Suppose T — B is a Serre fibration, E a B-retract of
an open subset of T, and m,(E(b),e) > n(T(b),e) is isomorphic for all i.
Then E — B is a Serre fibration.

Now suppose E < B x Z,r:B x Z — Z the projection. Define M;(e)
image 7, :m(E,e) > w(Z,re).

3.2. COROLLARY: Suppose E is a B-retract of an open subset of B x Z

and r,: w,(E(b), e) > n(Z,re) is monic with image Mj(e) for all b,e in E(b),i.
Then E — B is a Serre fibration.

109



110 J.F. McClendon [2]

The above are stated in section 3 in a slightly more general form (for
N-fibrations). An example is given in section 3 showing that “Serre”
cannot be replaced by “Hurewicz” in 3.2. The example also answers part
of a question of R. Brown [3]. A homotopy-negligible corollary is
proven generalizing part of a result of R. Wong [15].

The results of the present paper will be applied in a separate paper to
the study of continuous selections and fixed points for certain multi-
valued functions.

1. Notation

A map will be a continuous function. [ f] dnotes the homotopy class
of f but frequently the homotopy class will also be denoted by f. I is the
unit interval [0,1]. A function f:X — Y’ has an adjoint f":1 x X - Y,
f'(t,x) = f(x)(¢). Usually the “” is omitted and the same symbol used
for f and its adjoint. f:1 x X » Y gives rise to functions f, =
=f(t): X - Y, f(t)(x) = f(t,x). f restricted to [t,t'] x X gives a homo-
topy (reparamatrized) f(t) ~ f(¢’) and by reversal one f(t') ~ f(¢),
(t' < t). These homotopies can be denoted by f, but will usually be
denoted simply by f.

If functions p:X —»>B and ¢q:Y—> B are given then a function
f:X - Y is “over B” if qf = p. A homotopy H: X x I - Y is over B if
each H, is over B.

Suppose w:0I' —» X is given. Let 4,(X,w) be the set of all homotopy
classes of maps f:I' - X, which extend w, by homotopies which are
fixed on OI'. If w(dI') = point = x,, then 4,X,w) = n(X,x,) = the i’th
homotopy group of X at x,. 4,(X,w) may be empty. If f e 4,(X,w) then
there is a bijection 7;(X, w(0)) - 4,(X, w) defined by h - h + f.

A map q: T — B is an N-fibration if it has the homotopy lifting pro-
perty (= covering homotopy property) for CW complexes of dimension
< N, or equivalently, if it has the homotopy lifting property for cubes of
dimension < N. A Serre fibration is a map which is an N-fibration for
all N.

Two transformations will be needed. Let p:T —- B be a Serre
fibration.

(1) If v: 1> B is a path in B from b = v(0) to b’ = v(1) then there is a
function h,:no(T(b)) — no(T(b')) which depends only on the homotopy
class of v, rel ends, and satisfies h, ., = h,h,. This can be defined as
follows: if ye T(b) let L:I - T be any lifting of v such that L(0) = y.
Then h,[y] = [L(1)].

(2) Let w:0I' > T(b), w':0I' > T(b), and H:I x oI' > T be a homo-
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topy from w to w’ with pH, constant, all ¢ (so H,(I') = some fiber). Then
there is a function hy: A(T(b),w) — 4,(T(b'), w') which depends only on
the homotopy class of H (by homotopy rel dI x dI' and over B where
I x 0I' > B is un,, u(t) = pH,). It satisfies hy, gy = hyhy and may be
defined as hy[f] =[L,] where L is any map filling the following
diagram

oxIul xor L&,

n -1
1><1"—’—£——»B

As a particular case suppose r is a path in T from y to y, py = b,
py' =b'. Then there is a function h,:7,(T(b),y)— n(T(¥),y), h,.,
= h,.h,.

All of the above assertions are easily verified by the methods of [13, p.
379-382].

If g:T— B is given and E < T use the notation j:E < T and j or
j(b): E(b) = T(b), i or i(b): E(b) = E. Sometimes i and j are dropped from
the notation.

Monic means one-to-one.

2. Fibration theorem and proof

Consider

EcT
\/
p q
B
2.1. DEeFINITION: Suppose T — B is a Serre fibration. E is an N-con-
sistent subset if the following are satisfied, 0 <i < N.
0) (a) j,:mo(E(D)) — mo(T(h)) is monic for all b, w.
(b) h,(j,mo(E(D)) < j,mo(E(D)) for any path v from b to b’ in B.
0 E=1)
(@) jy: A(E(b), w) > A(T(b),jw) is monic for all b, w.
(b) hjg(jA(E(b),w)) < j A(ED),w) for all H:w~w with pH,

constant.
The main theorem is the following one.

2.2. THEOREM: Suppose T — B is a Serre fibration and E = T is an N-
consistent subset and a B-retract of an open subset of T. Then E — B is an
N-fibration.
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Proor: The proof is by induction on N. First take N = 0.

O—i—;Ee—'—U.c"T rj=id U open
b l‘l":/ ’ J=J7
I—5B =

Given that pg = fi, it is necessary to find F with Fi =g and pF = f.
Write e(0) = g(0) and let £(0) = [e(0)] in my(E(f(0))). Define &(t) in
mo(E(f(t)) by h(jé(0)) =jé(t). Then h(j&(t)) = jé(t') for any t, t', where
the f subscript is f,..

Pick e(t)e&(t) so e(t)e E(f(¢)) = T(f(t)). Because T — B is a fibration
there is a K:I » T with pK = f and K(f) = je(t). K~ '(U) is an open
subset of I so there is an open nbhd W(t) of t in I and, by restricting K, a
map G': W(t)—> U, over B, with G'(t) =j'e(t). Define G =rG’: W(t) - E.
Then G is over B (since r and G’ are) and G(t) = rG'(t) = rj'e(t) = e(t).
The restriction of G to [t',t"] shows (see sect. 1) that h[G(t')] = [G(t")].
So [G(t')] = h&(t) = &(t') all t' in W(¢).

Since I is compact there are 0=gy<a;<...<a,=1 and
F;:[a;_,,a;] — E with pF; = f, [F{(t)] = &(t) in ny(E(f(t))) (each F; is a
restriction of one of the G’s).

It is necessary to modify the F;. For this purpose here and later we
need the following lemma which was proven in [8] for E open in T. The
present version follows by applying the version in [8] to the containing
open set U and then applying the retraction.

2.3. LEMMA: Suppose T — B a Serre fibration, E a B-retract of an open
subset of T. Let (X,A) be a relative CW complex, f:X — E a map,
G:A x I > E a homotopy with G, = f|A and pG(a,t) = pf(a), all a, t.
Then G extends to a homotopy H:X x I — E with Hy = f and pH(x,1t)
= pf(x), all x,t.

Here let X =[a;,_y,a;]], A= {a;_,,a;}. Note [Fya;)] = [e(a;)], j =
=i— 1,i. Let G on a; x I be the homotopy from Fi(a;) to e(a;). Then 2.3
gives an extension H of G, H: X x I —» E, H is over B, Hy = F,. Define
F; = H,. Then pF; = f, Fi(a;) = e(a;), j = i — 1, i. The F; fit together to
give the desired F:I — E completing the N = 0 proof.

Now assume the theorem for 0 < M < N. To prove the theorem it will
suffice, by adjointness, to prove E! — B! is an (N — 1)-fibration. Since E’
is an B'-retract of the open U’ of T the induction assumption shows: it
suffices to prove for 0 <i< N — 1:

0) no(E'w) » no(T'w)) is monmic, all u in B!  and
h(jno(EX(w) < jno(E'(w)) for all v:u ~ u'.
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(@) A(E'(w),U)— 4T u),U) is monic, all 4, U in E'(u), and
hig(A(E"(u), U) < jA(E'(w), U’) for any H path from U to U’ in E" with
p'H, constant.

Proor ofF MoNiIC (for O and i): Using the 4,,7; 1-1 correspondence it
is easily checked that it suffices to prove j,:m(E'(u), w) - n(T"(u), w)
monic. Suppose j,[f] = 0 and consider:

ar+t —L Elu) —— T'(w)

LU
LN

it Ixortt L g1,
N 7
I x I“l// P !
l u
1 B

Given that jf extends in the first diagram we must find an extension F
of f as shown. By adjointness this amounts to finding F for the second,
given that jf extends over B. If t = 0 we get

0 x ar'* 1 —L2— E@(0)) —— T(u(0)
_—"&0)

0 x Ii+1/

and the hypothesis that =;(E(u(0)), ¢) - ,(T(4(0)), e) is monic gives ¢(0) as
shown. Define &(0) = [e(0)] € 4,(Eu(0)),f) and &(t)e A(E(u(t)),f) by
hy(j€o) = j&,. Then h(j&(t)) = jé(t') for all t,t' where the last subscript f
is f.

Pick e(f)e £(t) and let g: Q(t) > E where Q =1 x dI'* 1 Ut x I'*! and
g=fue(t). Because T—B is a Serre fibration jg extends to
K:I x I'*' 5 T, over B. K~ !(U) is an open nbhd of Q so we get, by
restricting K, G': W x I'*! - U extending f over B where W is an open
nbhd of t in I. Define G = rG'. Since r and G’ are over B so is G and Gi
=rGi=rj(f ve(t)) = f Uelt). The existence of G shows (see section 1)
that h; [jG(t)] = [[G(¢")] for all t,¢' in W where the subscript f is f;,..
So ju[G(t)] = hjs(i,G(0) = hj;(j,6(0) (since G() = e(t)) =j, (). Jy
monic then gives [G(t')] = &(t), all ¢ e W.

The W = W(t)’s cover I so we get 0 =ay<a; <...<a,=1 and
maps F;:[a;_;,a;] x I' > E (each a restriction of some G) satisfying (1)
F; extends f (where both defined) (2) F; is over B, and (3) [Fi(t)] = &(¢)
all i, t. Now the F; must be modified to fit together to give the desired F-
but the procedure is exactly like that in the N = 0 case using lemma 2.3,
so the details are omitted here.



114 J.F. McClendon [6]

PROOF OF h,jno(ENw) < juo(E'(w)): This is quite similar to the next part
of the proof so the details are omitted.

PROOF THAT h;y(jA{E!(u), U)) = jA(E'W),U’): Let v:T'— T and
B' - B be defined by vh = h(0). Then v maps the Serre fibration
T*(u) - T - B! to the Serre fibration T(u(0)) » T— B. The bottom two
maps are clearly homotopy equivalences so the fibration exact se-
quences show that n(T’(u), U) - n,(T(u(0)), U(0)) is isomorphic for all i.
If A4(T'w),w) is non-empty then it follows that
v: AT (u),w) > A(T(u(0)), vw) is also a bijection. Now consider the fol-
lowing diagram.

f >jf — jf(0)
A(E W), w) —— A(T'(W),w) —— A(T(u(0)),vw)
lth lhij

A(E" W), W) —— A(T" (W), W) —— AT (0)), vw)

In proving the assertion it may be assumed that A,(T "(u),w) # . hjy
shows that A,(T'(w'),w’) # @ and hence both v’s are bijection. Let [h]
= h,;u(if(0). By hypotheses [h] = j,[g] for g:I' > E@(0)), g|oI' = w,
(since i < N, in fact i < N — 1 here). Consider

guw’

O0x I'ul x o' =%,
—

E— B is an i-fibration (since i < N — 1) so f exists as shown and
Lif'(0)] = [ig] = [h] = h,;ulif(0)] proving the assertion.

A slight modification of the proof above yields a theorem giving
sufficient conditions for a map E — B to be a Serre fibration. Some
definitions are needed to state the result.

2.4. DErFINITION: Let E — B be a map.

(1) E — B has the B-CHP (B-covering homotopy property) for (X, A)
if: for every map f:X — E and homotpy G:A x I - E of f|A with
pG(a,t) = pf(a), all a,t, there is a homotopy H: X x I — E extending G
with H, = f and pH(x,t) = pf(x), all x,t. E —» B has B-CHP(n) if it has
B-CHP for all relative CW complexes of dimension < n.

(2) p:E - B has the local extension property (LEP) for (X, 4) if for
every u: A — E, v: X — B with pu = vi there is an open nbhd U of A in X
and map F:U — E extending u over B. E — B has LEP(n) if it has LEP
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for all relative CW complexes (X, A) with A a deformation retract of X
and dimension (X, 4) <n.

Note: “E — B has B-CHP” is the conclusion of Lemma 2.3. The con-
dition B-CHP is the same as “E — B has CHP for (X,4) in Top
(@ — B)”, see [7]. Theorem 2.6 below can be viewed as giving extra con-
ditions on a certain Top (§ — B) Serre fibration to ensure it is an ordi-
nary Serre fibration.

2.5. DErFINITION: A map E — B has an i-action if:

Case 1, i=0: for each path v:I - B there is a function h(v):
o (E((0))) — no(E(1(0))) satisfying (1) h(v) = h(v') if v ~ v’ rel ends, (2)
h(const) = id., (3) h(v + v') = h(t)h(v), and (4) h(v)[L(0)] = [L(1)] if
L:I - E lifts v. (Liftings are not assumed to exist.)

Case 2, i > 0: for each w:0I' - E(b), w':0I' - E(b') and homotopy
H:I x 0I' > E from w to w’ with pH = un for some u:I — B there is a
function h(H): A(E(b), w) » A(E(b"),w') satisfying (1) h(H) = h(H') if
H ~ H' rel 81 x 0I' over B, (2) h(const) = id, (e)h(H + H') = h(H')h(H)
and (4) W(H)[L(0)] = [L(1)] if L:I x I' > E extends H and pL = un.

2.6. THEOREM: Suppose a map E—» B has B-CHP (N + 1), LEP
(N + 1), and i-action, i < N. Then E — B is an N-fibration.

The proof is very similar to that of Theorem 2.2 and is omitted.

2.7. COROLLARY: Suppose a map E — B had B-CHP (N + 1), LEP
(N + 1), and non-empty N-connected fibers. Then E — B is an N-fibration.

3. Special cases, example

3.1. COROLLARY: Suppose T — B is a Serre fibration, E a B-retract of
an open subset of T, and my(E(b),e) — n(T(b),e) isomorphic for i < N.
Then E — B is an N-fibration.

Proor: Conditions 0-a and 0-b of 2.1 are immediate. For i-a note
that if [f] and [g] are in 4,(E(b), w) we can form their difference (glue
along oI') [d(f,g)] € n(E(b), w(0)). So j,[f]=j.[g] gives j,[d(f,9)] =0
so by our current hypothesis [d(f,g)] =0 and hence [f] = [g]. For
(i-b) note first that A,(E(b),w) # O gives A,(E(b),w) # @ since w is
in ;1 (E(),w0)) ~ m;_,(T(b), w(0)) = (by hy) to m;_,(T(H),w(0)) ~
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~ n;_(E(}b),w(0)) and w is sent to w'. Using this the m;, 4; corre-
spondence shows j, : 4,(E(b), w) > 4,(T(b),w) is bijective and the same
for b’,w' so condition (i-b) follows from the hypotheses of 3.1.

Now consider

ESBxZ5H2Z

and let M;(e) = Image (1)), : ti(E, €) - 7(Z, re).

3.2. COROLLARY: Assume E a B-retract of an open subset of B x Z and
(7ji)y : T(E(D), €) > n(Z,re) monic with image Mye) for all b, e in E(b),
0 <i< N. Then E - B is an N-fibration.

Proor: Let T=B x Z so T(b) is b x Z. By hypothesis, n;,(E(b),e)
— (T(b), e) is monic. This proves 0-a of 2.1 directly and the argument
of 3.1 above shows (i-a) is also true. (0-b) is similar to, but easier than,
the following. Proof of (i-b). Consider

A(E(b),w) —=5 A b x Z,rw)
lhrH

ALEWD),w) 225 A x Z,rw)

and it must be shown that h ,(Im(ri),)  Im(r,i,). The following dia-
gram is commutative

A(E,w) —=— Ab x Z,rw)
th lhrH

A(E, W) —Zs AW x Z,1W)

so h,y(Im(r,) = Im(r,) and it will suffice to prove Im(r,) = Im(ri,).
Suppose Im(r,) #@. Then [w] =0 in m;,_;(E,w(0)) so [rw] =0 in
7;_1(Z,rw(0)). By hypothesis [w] =0 in m;_,(E(b),e) so Im(r,i,) # 0.
That is, Im(r,i,) = 0 = Im(r,) = § so we can assume Im(r i,) # @ and
must prove Im(r,) < Im(r,i,).
Let k = r,m be in Im(r,) and consider

m -k
A(E(b), W) ———— A(E,w) ———> 4,(Z,rw)
7 7 7

m(E(b), w(0)) —— m(E, w(0)) —— n(Z, rw(0))
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The vertical arrows are bijections defined by adding f,, ify, rify (resp.)
where f, € A,(E(b),w). Thus m = p + ify, pen,(E,w(0)) and hence k =
= rp + rif,. But by hypothesis rp =rig so k =rig + rify = ri(q + f;)
showing ke Im(r,i,) and completing the proof.

Norte: The conditions (i) of 2.1 can be replaced by the following:
(@) @) Jj,:7m(EDb),e) > n(T(b),e) monic, all b,e
(b) h,(j,m(ED),e) < j,m(ED),€) for any path r from e to ¢ in E.
(c) If A(E(b),w) # 0 and H:w ~ w':0I' - E with pH, constant then
there are f in 4, (E(b),w) and f’ in 4,(E(b"), w') with hg(jf) =jf".
The fact that (i’-a) gives (i-a) was shown in the proof of 3.1. We must
now deduce (i-b) from (i'-b) and (i'-c). Let a = a(f): n,(E(b), w(0)) —
A,(E(b), w) be the bijection defined by a(u) = u + f and similarly define
a=aljf), a = a(f'), and a’ = a(jf). Let h = h;y (on both n; and 4;). Let
g€ 4,(E(b),w). Then it must be proved that hjg =jg' for some
g e A(E(b"),w). Let g = ag. by hypothesis (i'-b), hjg = jg' for some ¢’
Define ¢g'=d'g. Then hjg = hjag = hajg = a'hjg = d'jg’ = ja'g = jg’;
proving (i-b).
The following result generalizes [8, lemma 1.2] in that “E open” is
here replaced by “E is a B-retract of an open”.

3.3. THEOREM: Suppose E is a B-retract of an open subset of T, where
T — B is a Serre fibration, and each E(b) is N-connected and non-empty.
Then E — B is an N-fibration.

This could be deduced from 2.2 as follows: conditions (i'-a) and (i'-b)
in the above note are immediate. (i'-c) can be proved. However, proving
(i'c) seems to require a significant part of the proof in [8]. The easiest
way to prove the theorem is to make a few small changes in the proof
given in [8]. The proof is omitted here.

Theorem 2.2 leads to a result on homotopy negligibility that gen-
eralises the homotopy negligible part of Wong [15, Cor. 2.3] (see also
[14, Th. 3]). If 4 < X, say that it is w-homotopically negligible
(w = weakly) if X\4 — X is a weak homotopy equivalence and locally
w-homotopically negligible if each point has a nbhd system {U,} such
that U\A4 — U, is a weak homotopy equivalence for each U,.

3.4. COROLLARY: Suppose E — B is a Serre fibration and E\A is a nbhd
retract in E. Suppose A(b) is locally w-homotopically negligible in E(b) for
all b in B. Then A is w-homotopically negligible in E.

Proor: It follows from [McCord, 10] that E(b)\ A(b) — E(b) is iso-
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morphic in homotopy and Cor. 3.1 shows E\A — B is a Serre fibration.
The homotopy sequences of E\A — B and E — B show that E\A — B is
isomorphic on homotopy so 4 is w-homotopically negligible.

CoMMENTS: (1) One can define 4 to be g-homotopy negligible to
mean X\ A — X is isomorphic on 7; for i < g. If we assume A closed in
E then [Eells-Kuiper, 5] can be used instead of [McCord, 10] to prove
the above corollary with “g-homotopy negligible” replacing w-
homotopy negligible everywhere.

(2) If E is an ANR then “weakly” in the conclusion of the corollary
can be dropped — i.e., E\A — E is then a homotopy equivalence.

It is tempting to try and replace “Serre” by “Hurewicz” in 3.2 (since
T — B is a product) or to make the replacement twice in 3.1. The follow-
ing example (taken from [9]) shows that some caution is required.

Let B = Hilbert cube, D = {(b,b)|be B}, and E = (B x B)\D < B x B.
Then we have

X B

Ec B
L

E(b) = B\{b} is contractible for all b (e.g. [2, Chap III, sect 4]) so
7,(E(b)) —» m,(T(b)) is isomorphic. By Cor. 3.2, E — B is a Serre fibration.
However, E —» B is not a Hurewicz fibration. The reason is that if it
were it would have a cross section (since B is contractible), say s: B — E,
7,8 = id. But then the composite 7,s: B — B would be a map without a
fixed point — contradicting the classical Brouwer fixed point theorem
[see, Kura towski, Topology, Vol. 11, p. 344].

Note that p: E — B above is an example of a Serre fibration with B
and each p~! (b) an ANR but p is not a Hurewicz fibration. This
answers part of a question of R. Brown [3] (see also [Allaud, 1]).
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