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§0. Introduction

(a) Historical Survey
The connection between translation manifolds and Abel’s theorem

was first realized during the last quarter of the nineteenth century. As an
outgrowth of his differential geometric research on minimal surfaces,
Sophus Lie wanted to find all surfaces S c C3 (or 1R3) which could be
swept out in more than one way by translating one curve rigidly along
another.

In terms of coordinates, this condition means that S can be described
parametrically in two ways, as the locus

where

and

are the two sets of curves which sweep out S. To ensure that the para-
metizations were really distinct, Lie worked with the hypothesis that the
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t. could be expressed as functions of the uj in such a way that ~ti ~uj ~ 0
for all i and j.

Lie studied these surfaces S by considering the tangent lines to the
curves ai and 03B2i, and made the fundamental discovery that these tan-
gents cut the plane at infinity in the points of an algebraic quartic curve
C (possibly singular or reducible, but always reduced). Explicitly, the
tangents,

viewed as the homogeneous coordinates of points in p2, all satisfy a
polynomial relation F(03BE, q, Ç) = 0 of degree four, which is the equation of
the curve C.

Lie then applied Abel’s theorem to rewrite (0.1) in terms of the three
Abelian integrals on C. Namely, ai and 03B2i can be parametrized as

follows:

where

the pi are a fixed collinear 4-tuple of points C n lo for some line 10 c p2,
and the QI are the variable collinear 4-tuples C n 1 for lines 1 near 10.
The double parametrization (0.1) is the reflection of the addition for-

mula for the Abelian integrals, and S is the locus in C3 obtained by
substituting the expressions (0.3) into (0.1).
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Thus Lie was led to a recipe for constructing all surfaces S as in (0.1),
since this construction can be applied to any reduced quartic C in p2. In
a sense Lie had reduced the problem to the simpler, and completely
algebraic, one of finding all the reduced quartics.

Lie proved these results in a rather ad hoc way, by showing that the
coefficients of the Taylor expansions of the ai and 03B2i satisfied certain
relations, which then implied that the ai and 03B2i had to lie on an alge-
braic curve. The article [16] is an excellent survey of Lie’s work, and
includes a bibliography of his papers on the subject. This survey also
contains some interesting examples of the surfaces S obtained from sin-
gular and reducible C, one of which was Lie’s original motivation for
studying these surfaces. See also §4 below.

Lie then proceeded to consider higher dimensional translation mani-
folds swept out by curves in two different ways. He conjectured that any
such manifold would be parametrized by Abelian integrals on an al-
gebraic curve as well, but he did not complete a proof of this, even in the
case of three-folds.

The proof in the case of translation surfaces was greatly simplified by
Darboux [4]. He showed that a sort of converse of Abel’s theorem could
be used to deduce that the 03B1i and 03B2i were pieces of an algebraic curve in
P2.
The first complete proof of Lie’s conjecture was given by Wirtinger in

1938, [18]. (Although Poincaré had published an argument to this effect
in [11], his proof is difficult to understand.) Wirtinger’s proof is based
on yet another algebraicity criteria for analytic curves such as the ai, Pi.
Then, as in the other proofs, he applied Abel’s theorem to obtain the
parametrization of any doubly translation type hypersurface S c Cn in
terms of Abelian integrals.

In the paper cited above and in a later one [12], Poincaré pointed out
the possibility of using these results to study the moduli of curves and
their Jacobian varieties. Specifically, if we apply the above construction
to a smooth, canonically embedded (hence non-hyperelliptic) curve C of
genus n in pn -1, then the associated translation manifold S is nothing
other than the lifting to C" of the theta-divisor Wn-1 in the Jacobian of
C. Poincaré went on to try to deduce a period relation for non-

hyperelliptic Jacobians of dimension 4 (the Poincaré asymptotic period
relation) from the fact that the theta-divisor of a Jacobian must be a
translation manifold in two ways. This gives some idea of the fascinating
history (and rich promise for the future) of this circle of ideas. As Wirtin-
ger says in the paper cited above, the amazing thing about Lie’s discov-
ery is the way the simply-stated differential-geometric criterion (0.1)
leads to a class of objects with as many deep applications in algebraic
geometry as the theta divisors in Jacobians.
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(b) The purpose of this paper is two-fold. First, we give the first

complete account of a new, simpler, and (perhaps) more conceptual
proof of the Lie-Wirtinger results. The idea behind this proof is that
Darboux’s method (the converse of Abel’s theorem, Corollary 1.3) can
be extended to the case of hypersurfaces S c C", for any n. This re-

alization is due to Bernard Saint-Donat ([15]); see also the sketch in
Mumford [10].) By systematically developing the theory for singular
and reducible curves, in Theorem 3.9 below we are able to give a pre-
cise, intrinsic description of the doubly translation type hypersurfaces in
C" satisfying a slight additional condition (see Proposition 3.7). It is

primarily the present, deeper understanding of the local structure of sin-
gular curves which makes this unified treatment possible.

Second, we show that these results are sufficient to prove that the
Jacobians of non-hyperelliptic curves are exactly the principally polar-
ized abelian varieties whose theta-divisors have a local double para-
metrization analogous to (0.1) at some point. This is the principal result
of this paper and the precise statement is given in Theorem 5.1.
Even though most of what follows can be phrased purely algebrai-

cally, 1 have tried so stay as close in spirit as possible to the concrete,
geometric style of the earlier papers cited above. In particular, we will
work exclusively with analytic and algebraic varieties defined over C.

§1 is a compendium of facts about generalized Jacobians of singular
curves, Abel’s theorem and its converse which will be used later. §2 and
§3 are devoted to the new proof of the Lie-Wirtinger results. In §4 we
present a few examples. Finally, §5 is devoted to the proof of the charac-
terization of Jacobian varieties mentioned above.

This is an expanded version of a part of the author’s Ph.D. thesis,
done at Yale under the direction of Bernard Saint-Donat. 1 would like

to thank him for introducing me to this fascinating subject.

§1. Abel’s theorem and its converse

(a) In this section we briefly review the salient facts about generalized
Jacobians, Abel’s theorem and its converse which will be used later. We
will work over C.

Let C c P" be a reduced curve (possibly singular or reducible). Let
n: é - C be the normalization of C. C has a canonical dualizing sheaf
03C9c, whose sections may be identified with meromorphic differentials, cv,
on C satisfying
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for all f ~ OC,Q and all Q ~ C. The notation is that of Serre [17], an
excellent reference for this material, together with Rosenlicht’s papers
[13] and [14] which treat the case of reducible curves as well.

Let Cns = C - Sing C. As usual, we define the generalized Jacobian
of C, denoted J(C), to be the group

J C - 
Cartier divisors on C supported on 
C. of degree zero on each component

divisors of meromorphic
functions on C 

As in the smooth case, J(C) may be realized analytically as a smooth
commutative complex Lie group - an extension of an abelian variety by
a linear group (C*)a x Cb. This is a consequence of

THEOREM 1.1 (Abel’s theorem [14]): A divisor D is equivalent to
the zero divisor if and only if there is an integral 1-chain y on

C - 1t - l(Sing C) with ôy = D such that 1. w = 0 for all 03C903B5H0(03C9C).
Integrating forms co over 1-chains induces a map

and the image, which we will call Ac, is a discrete subgroup of rank at
most 2dimH0(03C9C), the "lattice of periods" of C.

Choosing a non-singular base point pi on each irreducible component
Ci of C, and a basic Wj of H°(cvc), we define the Abel map.

if p E Ci. u extends by linearity to a map on divisors of C, and (via
Theorem 1.1) sets up an isomorphism J(C)  H0(03C9C)/C.

If C is connected, dim H0(03C9C) = pa(C), the arithmetic genus of C,
which can be computed in terms of the genera gi of the components of C
and the local invariants ô of the singular points.
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From now on in this section we will also assume C is a Gorenstein

curve. That is, Wc is locally free of rank one, so the divisors of dif-
ferentials determine a divisor class on C, called the canonical class. This

property may be expressed locally at the singular points: C is

Gorenstein if and only if dp = 2bp for all P E C, where d p = length«9p/cp)
and Cp is the conductor - see Serre [17]. As in the smooth case, most of
the geometry of C is reflected in the properties of the "subvarieties of
special divisors" of J(C). Let C = Ci u... u C, be the decomposition of
C into irreducible components. We will say a divisor D has multidegree
d = (d1, ..., dr) if deg D|Ci = di. The degree of D is L di, and we will say
D is effective if D = E niQi with all ni ~ 0.
The set of effective divisors of multidegree d may be identified with

(C1)(d1)ns x ... x (Cr)(dr)ns, where (Ci)ns = Ci n Cns and x(n) is the nth symmetric
power of x. Fixing our nonsingular base points pi E Ci, the image under
the Abel map (1.2) of this set of divisors is a subset of J(C), which we will
denote Wd.
Now we refer to §§5, 6of [9]. Because the Abel map is only defined on

Cns, Wd is Zariski-closed in J(C) only in certain cases. However, the
noncompact group variety J(C) may be compactified (embedded as a

Zariski-open subset of a projective algebraic variety J(C) in such a way
that the Abel map u 03C0: - 03C0-1(Sing C) ~ J(C) extends to a holom-
orphic map : ~ J(C). Hence the proper mapping theorem implies
that the Zariski-closure of Wd in J(C) is an analytic subvariety of J(C),
and Wd is a constructible, Zariski-dense subset. In fact for each d, Wd is
an irreducible analytic subvariety of J(C). For a non-functorial but ele-
mentary way to do all this, when the singularities of C are planar, see
[9]. The restrictive hypothesis that C lie on a smooth surface is not

necessary to obtain Jambois’ results. All that is needed is the weaker

hypothesis that C be a Gorenstein curve. The argument of [15] extends.
(b) Now let C c pn be any reduced curve. Let Ho be a hyperplane

meeting C transversely in d = deg C distinct points Pi(Ho). If H is any
hyperplane sufficiently close to Ho, H will also meet C in d distinct
points Pi(H) and Abel’s theorem implies that

for all 03C9 ~ HO(wc). (We agree to perform the integrations over paths
lying completely within some fixed (small) neighborhood of Ho, so that
no periods enter.)

All the results of this paper are based on the following sort of converse
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of Abel’s theorem ([8], [4], [3]). The idea is that addition formulas like
(1.4) come only from Abelian integrals on algebraic curves.

THEOREM 1.2 ([8], p. 367): Let Ho be a fixed hyperplane in pn and let
U :D Ho be an open neighborhood of Ho (in the classical topology). Let
T1, ..., rd be d analytic curves in U, which meet Ho transversely in d

distinct points. Suppose there are holomorphic 1-forms coi on ri such that
for all H near Ho :

then there is a algebraic curve r c pn of degree d (possibl y singular or
reducible) and a diff’erential 03C9 ~ H0(03C90393) such that Fi c rand 03C9|0393i = coi.

For our purposes it will be more convenient to use an "integrated"
form of this statement, namely

COROLLARY 1.3: Let Ho, U, ri be as in the theorem. Assume there exist
"parameters" Ti: 0393i ~ C (that is, invertible functions T such that Ti-1
parametrizes rifor each i) such that for all hyperplanes H near Ho,

then T i ~ T for some algebraic curve r of degree d and d T are the local
expansions of some W E HO(wr).

PROOF: Use affine coordinates on the dual projective space (pn)* near
Ho, take the total differential of (1.6) with respect to these coordinates,
and apply the theorem. Q.E.D.

REMARKS: (1) The first proof of Corollary 1.3 (for curves in P2) ap-
peared in Darboux, [4], and this was reproduced in Blaschke-Bol [3].
Grifhths [8] reinterpreted this proof as an application of Poincaré re-
sidues and generalized the theorem to the case of intersections of

varieties of higher dimension with linear subspaces of pn.
It would be very interesting to know if, after ruling out some degen-

erate cases, corollary 1.3 (suitably reformulated) remains true in positive
characteristic.

(2) The author has obtained such a result in arbitrary characteristic
in the case n = 2, d = 3 by a method different from that of Grifhths.
Details will appear elsewhere.
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§2. Translation manifolds

Let (S, 0) be a non-singular germ of analytic hypersurface in C", con-
tained in no linear subspace of Cn.

DEFINITION 2.1 : S is a translation manifold if there exist n - 1 holo-
morphic curves ai : 0394 ~ Cn (0394 is the open unit disc in C) with a;(0)
= 0 ~ Cn for all i, such that every point x ~ S can be written uniquely in
the form

where (t1, ..., tn-1) = (t 1 (x), ... , tn-1(x)) e 0394n-1. The aL are called the gen-
erating curves of S.

Geometrically, this means that the hypersurface S is swept out as the
curves 03B1i are translated rigidly along each other, hence the name "trans-
lation manifold". If the component functions of the ai are

then (2.1) is equivalent to the following parametrization. Let Xl,,,., Xn
be coordinates in cn, then S is the locus

REMARKS: More general translation manifolds are obtained if the

hypothesis that 03B1ij be holomorphic functions of ti is dropped, but they
will not be studied here.

We will be interested primarily in hypersurfaces S which admit two
parametrizations such as (2.2) which are distinct (in a sense to be made
precise). If S is given as a translation manifold in two ways:

(where the ai and the 03B2i are the two sets of generating curves) we will say
S is doubly of translation type.

DEFINITION 2.2: (1) the two parametrizations in (2.3) are distinct if the
vectors &#x26;,(0) = (03B1’i1(0), ..., 03B1’in(0)) and Pi(O) = (03B2’i1(0), ..., 03B2’in(0)) are pairwise
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linearly independent. (That is, the tangent lines to the ai and 03B2i at 0 are
distinct.)

(2) S will be called a nondegenerate doubly translation type hypersur-
face if none of the vectors i(0) = (03B1"i1(0), ..., 03B1"in(0)), i(0)
= (03B2"i1(0),...,03B2"in(0)) is tangent to S at 0.

§3. A new proof of Lie and Wirtinger’s results

Let (S, 0) c (Cn, 0) be a non-degenerate doubly translation type hyper-
surface as in (2.3). The fundamental construction we will use is Lie’s

original one. Namely we will pass from the generating curves 03B1i and 03B2i
themselves to the sets of tangent lines to these curves, which we will call

ai and Pi.
Since Ty(Cn) is canonically identified with Cn for all Y ~ Cn, we can

view the tangent lines to the ai and 03B2i as lying in a single ambient space
Cn. Via the standard identification

Pn-1 = {lines through 0 in Cn},

the tangents to ai and 03B2i sweep out arcs in Pn-1, denoted by à, and e, as
above. In parametric form, the ai and Pi are given (in homogeneous
coordinates) by

In terms of the tangents, the two conditions of Definition 2.2 become:

(1’) Since the tangent lines to the ai and 03B2i at 0 all lie in the tangent
hyperplane to S at 0, which corresponds to a hyperplane Ho c Pn-1,
this condition says ai(O) and Pi(O) are 2n - 2 distinct points of Ho.

(2’) Condition (2) implies that ai and ei cross Ho transversely.

LEMMA 3.1: By restricting the domains of ti and ui if necessary, we may
assume that the Gauss maps 03B1i(ti) ~ alti) and 03B2i(ui) ~ Pi(Ui) are injective
for all i.

PROOF: Condition (2) in Definition 2.2 implies that all the i(0) and
i(0) are non-zero. The lemma then follows, using the inverse function
theorem. Q.E.D.
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REMARKS: Lemma 3.1 says in particular that none of the generating
curves of a nondegenerate doubly translation type manifold can be a
line. This rules out "cylindrical" translation manifolds.
As usual, we will call the map g : S - (P"-’)* which associates to each

p E S the tangent hyperplane Tp(s) the projectivized Gauss map on S.

LEMMA 3.2: By restricting ti and u, again, if necessary, we may assume
g is injective.

PROOF: For this, all we need is that for one of the sets of generating
curves, say the ai, none of the vectors ai(O) is tangent to S at zero.
Note that, without loss of generality, we may assume that To(S) is the

hyperplane Xn = 0, and that for all p E S, Tp(S) has the form

where Cj are functions satisfying Cj(0, ..., 0) = 0. The cj(tl’’’.’ tn-1) are
the affine coordinates of the point g(P) E (pn -1)* where

To prove the lemma, it suffices to show that the differential of g at 0
has maximal rank

The lemma will then follow by the inverse function theorem.
Now, if P = 03A303B1i(ti), then ai(ti) E 1;,(S) so from (3.1)

Differentiating (3.2) with respect to tk, we have
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These equations can be rewritten in matrix form:

Evaluating at t, = 0, all l, we see that det(oCdotj) = 0 if and only if
akn(0) - 03A3 Cj(0, ..., 0)03B1"kj = 0 for some k, that is âk(0) is tangent to S at
0 E en. This would contradict the hypothesis that S is nondegenerate.
Q.E.D.
The basis of all that follows is this proposition. It is here that this

proof differs from the one given by Wirtinger. This is also proved in
Mumford, [10].

PROPOSITION 3.3: Let S, ai, 03B2i, Ho be as above. 7hen the ai and i lie
on an algebraic curve of degree 2n - 2 in Pn-1, possibly singular or
reducible.

PROOF: The starting point is the parametrization (2.3) for S. Let z E S
be any point. For this z we have (unique) ti(z) and ui(z) in the unit disc
such that

The tangent lines to a; and 03B2i at the points ai(ti(z)) and 03B2i(ui(z)) all lie
in 7§(S), hence in Pn-1, the corresponding points on ai and ei lie on the
image of Tz(S), a hyperplane we will call H,,. In this way, each z ~ S
defines a hyperplane Hz c pn-1 meeting the ai’ Pi in 2n - 2 (distinct)
points.

Conversely, any hyperplane H c P"-’ which is sufficiently close to
Ho (in the obvious sense) will meet the holomorphic curves ii and Pi in
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2n - 2 points which correspond via Lemma 3.1 to unique points on 03B1i
and 03B2i. By definition, the points on the 03B1i sum to a point z1 ~ S, while
those on the 03B2i sum to a point Z2 c- S. However, the points H n ai and
H n fli span only a hyperplane in P"- 1, so we must have Tz1(S) = Tz2(S).
By Lemma 3.2 then, Zl = z2. In sum, after restricting the ti and ui as
necessary, there is a one-to-one correspondence

{points of SI

defined via 2

Now, consider linear maps 0: Cn ~ C with the property that 03A6, re-
stricted to each of the tangent lines &#x26;,(0) and fl;(0) is not identically zero.
Since the set of such 0 is the complement of a finite set of hyperplanes
in Hom(C", C), it is non-empty (in fact, it contains a linear basis of

Hom(C", C) - this remark will be used later).
Using Lemma 3.1, it is easy to see that for any such 03A6, 03A6  03B1i and

03A6  03B2i define parameters (in the sense of Corollary 1.3) on the ai’ i
respectively.
For a more symmetrical statement, we let de = 0393i and = 0393n-1+i.

Further, let 03A603B1i = T and - 03A603B2i = Tn-1+i. Equation (3.5) and the
above remarks imply that for any H near Ho in Pn-1, H = Hz for some
z E S, and we have

By Corollary 1.3 (applied to the curves Tj with parameters Tj), the Fj
lie on an algebraic curve C of degree 2n - 2 in Pn-1, and furthermore,
for each 0, d(03A603B1i) and - d(03A603B2i) are the local expansions of some
differential W E HO(wc). Q.E.D.
The curves which arise this way are very special. First, note that any

such C spans Pn-1 (otherwise we would have a contradiction to the
conclusion of Lemma 3.2). Second, the set of 4Y for which we can apply
Corollary 1.3 is open in Hom(Cn,C). These two remarks combined yield.
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COROLLARY 3.4: Let S be any doubly translation type hypersurface as
in the proposition, and let C c Pn-1 be the corresponding algebraic curve
of degree 2n - 2. Then

(a) dim H0(03C9c) ~ n, and
(b) the hyperplanes in Pn-1 cut special divisors on C.

PROOF: (a) Without loss of generality, we can choose coordinates
x1, ..., xn in C" such that none of the 03A6j ~ Hom(Cn,C) defined by
03A6j(x1, ..., xn) = Xj vanish on any of the i(0) or i(0). Then, as in the
proof of the proposition, for each j, d(03A6j03B1i) and - d(03A6j03B2i) are the
local expansions of some wjEHO(wc) on 03B1i and Pi respectively.

Suppose the Wj are linearly dependent in HO(wc):

for some aj E C. Then by the definition of Wj (since a;(0) = 0 and 03B2i(0)
= 0) all the ai and Pi lie in the hyperplane E ajxj = 0 in C". This is a
contradiction by the remark following the proposition. Hence

dim H0(03C9c) ~ n.
n

(b) By part (a) the hyperplane E ajxj = 0 in Pn-1 cuts C in the di-
n

visor of zeros of Y ajwjEHO(wc) (or a part of that divisor.) Q.E.D.
j=l

Our second corollary of Proposition 3.3 is the following explicit form
of the parametrization of S in (3.5).

COROLLARY 3.5: (the theorem of Lie and Wirtinger). Let coi be the dif-
ferentials chosen in Corollary 3.4. Then S is the locus

where Pi(H) = Fi n H and H ranges over all hyperplanes near Ho in Pn-1.

PROOF: This is immediate from the proposition and corollary 3.4.

Q.E.D.
This is the exact analog of the parametrization of doubly translation

type surfaces described in §0. The generating curves are parametrized by
the Abelian integrals on C, and any double parametrization as in (3.5) is
a direct consequence of Abel’s theorem on some algebraic curve C (in
the form (1.4)).
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By reversing the above construction, Corollary 3.5 gives, in effect, a
recipe for generating all possible hypersurfaces doubly of translation
type (this was Lie’s original goal). Hence every nondegenerate doubly
translation type hypersurface S c Cn may be constructed as follows:

1. Let C be a reduced algebraic curve of degree 2n - 2 spanning Pn-1
with dim H0(03C9C) ~ n, whose hyperplane sections are special divisors

(N.B. this last condition is not automatic for reducible curves C!).
2. Let Ho be any hyperplane meeting C transversely.
3. Fix some partition of the branches of C centered along Ho into two

complementary sets of n - 1 each {03931, ..., 0393n-1} and {0393n, ..., 03932n-2}
in such a way that both sets of points {03931 ~ H, ..., 0393n-1 ~ H0} and
{0393n  H0, ..., 03932n-2 ~ H0} span H..

4. Let w 1, ..., cvn be differentials in H’(coc) corresponding to the coor-
dinate hyperplanes in Pn-1.

5. Construct the locus S as in (3.7).

In principle, this reduces the problem of finding all doubly translation
type manifolds S to the algebraic problem of classifying all curves C

satisfying all the conditions above. A complete listing of the possibilities
(even when n = 3) is difficult, though, because of the large number of
different types of singular and reducible curves which can occur, not to
mention the fact that one (reducible) C can give rise to several different
manifolds S (see example 4.4).
We will be primarily interested in the manifolds S which are para-

metrized by Abelian integrals on curves C with dim HO(wc) = n. There
are several good reasons to restrict our attention in this way. First, the
maximum arithmetic genus of an irreducible curve of degree 2n - 2 in
Pn-1 is n and since irreducible curves are connected, dim H0(03C9C)
= pa(C) = n ([Rl], corollary to theorem 16.). Thus, if dim H’(coc) &#x3E; n, C

is reducible (and furthermore, C cannot appear as a singular fiber in a
family of smooth canonical curves of genus n).

Second, in case dim H0(03C9C) = n + k(k &#x3E; 0) we can complete 03C91, ..., cvn
(as above) to a basis 03C91, ..., 03C9n+k of N0(03C9C). The addition formula (1.4)
holds for all the 03C9i, so we can construct a new doubly translation type
manifold S1 c Cn+k by integrating all the Wi and summing as in (3.7).
Our original S thus appears as the projection of S’ into the Cn defined
by Xn+1 = ... = Xn+k = 0.

EXAMPLE 3.6: The simplest example of this type may be obtained as
follows (see [18], p. 429-431). In P2m(m ~ 2), let Li ~ Pm be two linear
subspaces in general position. Let Ci ~ Li be smooth canonical curves of
genus m + 1, meeting transversely at the point L1 n L2. Then C
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= Ci u C, is a (stable) curve of genus 2m + 2 and degree 4m in P2m. It is
clear that dim H0(03C9C) = 2m + 2 as well.

Let Ho be any hyperplane meeting C transversely, and let 03931,...,0393m
be some m branches of Ci centered along Ho. Similarly let Tm+ 1, ..., r 2m
be some m branches of C2 centered along Ho. Let 03932m+1, ..., 03933m be the
remaining branches of Ci and 03933m+1, ..., 03934m the remaining branches of
C2.
For a general Ho, {03931, ..., Il 2mi and {03932m+1, ..., 03934m} will be comple-

mentary sets of 2m branches, each with the property that the points
{0393i n H0} = {Pi(H0)} (i = 1,..., 2m and i = 2m + 1,..., 4m) span Ho.
Choose any basis {03C91, ..., 03C92m+2} for H0(03C9C) and let S’ C c2m+2 be

the locus

Projecting S’ into C2m+1 yields a doubly translation type hypersurface
S. It is easy to generalize this example by allowing the Ci to have differ-
ent genera, allowing more than two components for C, allowing the Ci
themselves to degenerate and so on.

REMARKS: In intrinsic terms, the S’ constructed in this example is

nothing other than a piece of product of the theta-divisors of the

Ci:e1 x e2 c J(C1) x J(C2).
One important feature of this example is that (in general) if a hyper-

plane H passes through m specified points on 03931,...,0393m, the points
H n T2m+1, ..., H n 03933m on C 1 are uniquely determined, while the points
H n Fi for i = m + 1, ..., 2m and i = 3m + 1, ..., 4m (the points on C2)
are completely arbitrary. This says that in the parametrization of S’ (and
S) some of the ui in the second parametrization vary independently of
some of the ti in the first.
Somewhat surprisingly, if we exclude this kind of behavior, then

dim H°(cvc) = n. The following proposition thus gives a criterion for de-
termining whether a given S is parametrized by the Abelian integrals on
a curve C with dim HO(coc) = n.

PROPOSITION 3.7 ([18], p. 395-397): Let S, ai(ti), 03B2i(ui) and C be defined
as above. Assume further that
(*) For at least one ti, say tl, if we fix tj (j = 2,..., n - 1) and vary t1 to
obtain z(t 1) E S, then
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where d dt1 ui(t1)  0 for all i (that is, none of the ui t is constant along

z(t,) c S). Then, dim H0(03C9C) = n and S is not the projection of a doubly
translation type manifold from a space of higher dimension.

REMARKS: (1) Wirtinger studies the slightly more general problem of
finding all doubly translation type manifolds S of dimension n - 1 in
CP, p ~ n and shows that under assumption (*), any such S lies auto-
matically in a Cn c CP that is, there is linear dependence among the
component functions of the generating curves if p &#x3E; n. dim H°(cvc) = n
follows immediately.
The proof is entirely elementary, but computational, so we do not

reproduce it here.
(2) Note that (*) is always satisfied when n = 3.
When (*) is satisfied on S, the corresponding C have almost all of the

beautiful properties of smooth canonical curves.

COROLLARY 3.8: Let S satisfy the condition (*) of the proposition, then
C is a connected, canonically embedded ("non-hyperelliptic") curve of
arithmetic genus n in pn-1 (that is OC(1) ~ 03C9C).

PROOF: This follows by the Riemann-Roch formula for singular
curves ([1] ch. VII). Let L = (!J c( 1). We have

deg L = 2n - 2 and pa(C) = dim H0(03C9C) - b + 1 where b is the number
of connected components of C. Hence,

By duality h1(L) = dim HomOC(L, 03C9C) ~ 1 since the hyperplane sections
of C are special (Corollary 3.4). Since h°(L) = n, we deduce that

b + h1(L) = 2. Hence, b = h1(L) = 1 and the corollary follows. Q.E.D.
In particular these curves C are Gorenstein curves, although they can

easily fail to be local complete intersections. For instance, see Example
4.3 below.

We conclude this section with a more intrinsic characterization of the

S satisfying condition (*). We use the notation and terminology of §1.

THEOREM 3.9: Let (S,0) be a non-degenerate doubly translation type
hypersurface in Cn satisfying the condition (*) of Proposition 3.7, and let C
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be the associated canonicall y embedded curve in Pn-1. 7hen there is a

multidegree d and an effective divisor D of degree n - 1 and multidegree d,
with dim H0(03C9C ~ O ( - D)) = 1, such that (Sl, 0) is a translate of the lift-
ing to Cn of the germ (Wd, u(D)) from J(C).

PROOF: Recall that any double parametrization as in (3.5) determines
not only the curve C c Pn-1, but also a partition of the branches of C
along Ho into two complementary subsets of n - 1 each the {i} and the
{i}. Comparing the first parametrization in (3.7) with the definition of
the Wd via the Abel map in §1, we see that S is a translate of the lifting to
C" of ( Wd, u(D)) where

(the points i n Ho) and d is determined by the distribution of the points
of D among the components of C. dimH0(03C9C ~ O(-D)) = 1 follows

since S is nondegenerate.
In intrinsic terms, the second parametrization of S comes from the

"reciprocity law" Wd = k - Wdl in J(C), where k is the "canonical point,"
u((03C9)) for w E HO(wc), and dl is the multidegree deg(co) - d. Q.E.D.

§4. Some examples

In this section, we give some examples to illustrate the results of §3.
Our major tool will be theorem 3.9.

EXAMPLE 4.1: When C c P"-’ is a smooth canonical curve of genus n
and Ho is a hyperplane meeting C transversely, we can divide the 2n - 2
points H0 ~ C into two complementary sets {P1,...,Pn-1} and

{Pn, ..., P2n-2}. Applying theorem 3.9, we see that the translation mani-
fold corresponding to this subdivision of the points Ho n C is a translate
of the germ of Wn-1(C) at the point u(D), where D = 1 Pi. In this
case, since C is irreducible, different subdivisions of Ho n C simply yield
the germ of Wn-1(C) at different points.

Extending the Abel map u over all paths in C we obtain the full

divisor 03C1-1(Wn-1), where 03C1:Cn ~ J(C) ~ Cn/C is the natural pro-

jection. By Riemann’s theorem, 03C1-1(Wn-1) is a translate of the divisor of
zeroes of the Riemann theta function of C.
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REMARKS: In this example C is (necessarily) nonhyperelliptic, but it is
easy to describe what happens for hyperelliptic curves as well. If T is
hyperelliptic Wn-1(0393) on J(T) is constructed via the Abel map as before,
and by definition the germ of Wn-1(0393) at any smooth point is a trans-
lation manifold. Wn-1(0393) is still symmetric about the canonical point
u(kr) (that is Wn-1(0393) = u(kr) - Wn-1(0393)), but in this case kr = (n - 1)g2
and W1(0393) is symmetric about the hyperelliptic point u(g2). The two
parametrizations of Wn-1(0393) actually coincide (neither condition of

Definition 2.2 is satisfied). If we apply the construction of proposition
3.3, we obtain the non-reduced canonical image in Pn-1.

EXAMPLE 4.2: If C is an irreducible curve with at most ordinary
double points (nodes) as singularities, then, as is well known, the picture
is very similar to that for smooth curves. As in §1, let n: C ~ C be the
normalization. Let g = g(C) and let 03B4 be the number of nodes on C, the
ith one obtained by identifying a pair (ai, bi) of distinct points on C. We
have pa(C) = n = g + ô.

H0(03C9C) is spanned by the holomorphic differentials in HO(Wè) and
additional normalized differentials of the third kind wbi-ai which have

simple poles at bi and ai with residues + 1 and -1 respectively.
In this case J(C) ~ Cn/C, where Ac c Cn has rank 2g + ô; J(C) is an

extension of J(C) by a b-dimensional torus (C*y5. By theorem 3.9, the
doubly translation type manifold S is the germ of Wn-1(C) at some

point u(D), lifted to cn and translated. In this case Wn-1(C) is still an
irreducible divisor in Cn , but it is periodic only with respect to trans-
lations by x~C (this will be proved in §5).
Once again there is an entire holomorphic function on Cn whose di-

visor of zeroes is a translate of Wn-1(C). For example, if à = 2, writing
z ~ Cg+2 as z = (z,zg+1,zg+2) where  ~ Cg, we have that Wn-1(C) is a
translate of the divisor of zeroes of

Here û :  ~ Cg is the Abel map on C, 9 is the g variable Riemann theta
function of C, and (Obi are the normalized differentials of the third
kind as above.
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This 0 may be viewed as a degenerate "limit" of ordinary theta func-
tions, and the expression above may be derived in this way. See for
instance [7], p. 55.

EXAMPLE 4.3: Very roughly speaking, the more singular C is, the less
transcendental S is. At the far end of the scale from the smooth canon-

ical curves in pn - 1, consider the monomial curve C parametrized by
~:P1 ~ Pn-1, ~(s,t) = (s2n-2, sn-2tn, sn-3tn+1,...,t2n-2). It is easily
checked that C is a Gorenstein canonically-embedded curve of arithme-
tic genus pa(C) = n with a single singular point p = (1, 0,..., 0) for which

bp = n. In fact H°(cvc) is spanned by the differentials

on  ~ P1. Wn-1(C) is parametrized as follows. We omit the limits of
integration and write ti i = 1,..., n - 1 for the parameters on the chosen
n - 1 branches of C through Ho :

The ti can be eliminated between these expressions to yield a poly-
nomial equation for Wn-1(C). For example, when n = 3, setting x =

- xl, y = - 2x2, z = - 3x3 we have

and a calculation shows that 4x + Z5 - 5zy’ = 0. Since this algebraic
surface in C3 ~ J(C) is clearly irreducible, W2(C) is cut out by this
equation. In the same vein the papers [5] and [6] contain many

examples of other doubly translation type surfaces in C3 which are most
instructive.
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EXAMPLE 4.4: Finally, let C c p2 be a reducible quartic C = C, u C,,
where the Ci are smooth conics meeting transversely. Let f(x, y)
= p1(x,y)p2(x,y) = 0 be the affine equation of C. Then H0(03C9C) is

spanned by the differentials

Let Ho be any line meeting C transversely. Following the recipe of §3,
there are two possible ways to split the branches of C along Ho into two
complementary sets of two branches each, namely we can take

(a) two branches belonging to the same Ci, or
(b) one branch from each of the Ci.

These two choices yield different translation manifolds, namely K(2,0)
and W(1,1) in J(C).

Lie studied this case and showed that if the Ci are defined over R and
Ci is a circle, then in case (a) the real points of the corresponding S form
a minimal surface (in the differential-geometric sense). Recall that any
real minimal surface is a part of a complex tranlation surface whose
generating curves are "minimal curves." See [2], pages 330-332. Notic-
ing that S actually had two different parametrizations as a translation
surface, Lie was led to study all such surfaces.

§5. Application to moduli of curves and Jacobian varieties

In this section, we will show that theorem 3.9 can be used to give a
characterization of non-hyperelliptic Jacobians among all principally
polarized abelian varieties. The idea of the proof is to consider the theta
divsor of the abelian variety A, lifted to Cn (or equivalently, the divisor
of zeros of the corresponding Riemann theta-function). We assume that
near some point, the theta divisor, 0, has a double parametrization as
in (2.3), and show (using Theorem 3.9) that 0 coinsides with the lifting
of Wd(C) to Cn for some C. Then by analyzing the global periodicity
properties of these divisors we conclude that C is a smooth curve of
genus n and (A, 0398) is the canonically polarized Jacobian of C.

THEOREM 5.1 : Let (A, O) be an n-dimensional principally polarized
abelian variety. Suppose there is a point p E 0 such that the germ of 0 at p
(lifted to Cn and translated to 0) is a nondegenerate doubly translation
type manifold satisfying the condition (*) in Proposition 3.7. 7hen (A, 0) is
the canonically polarized Jacobian of a smooth nonhyperelliptic curve of
genus n.



167

PROOF: First note that under our hypotheses, 0 must be an irre-
ducible divisor in A. This is a consequence of the following easy lemma.

LEMMA 5.2: Let A be an n-dimensional abelian variety and let D be an

effective divisor which defines a principal polarization on A. If D = r1D1
+ ... + rkDk where the ri &#x3E; 0 and k ~ 2, then the Di are all degenerate
divisors (in the sense that corresponding Riemann forms are not positive
definite).

PROOF OF THE LEMMA: Suppose D ridi as above with D1 nonde-
generate (and ri &#x3E; 0). Since D1 is effective, it is an ample divisor by
Lefschetz’s theorem. Hence, by the Riemann-Roch theorem

dim H0(OA(D1)) = Dn1 n! ~ 1

On the other hand D defines a principal polarization so

dimHO«(9 A (D)) = n! 1.

Hence

Since D 1 is ample, Dn-11Di &#x3E; 0 all i, and all the other terms are at least
zero since the D, are effective divisors on A. It follows easily that

Hence D = D 1. Q.E.D.
On the other hand, the germ of a degenerate divisor (in the sense of

the lemma) cannot be a nondegenerate translation manifold (the image
of the Gauss map is not (n - 1)-dimensional). Hence e must be an
irreducible divisor.
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Now, we fix an isomorphism A rr Cn/A where A is a lattice in Cn.
We consider (e, p) lifted to Cn and translated so that p lies at the origin.
By Theorem 3.9, we know there is a connected, reduced algebraic curve
C of degree 2n - 2 and arithmetic genus pa(C) = n in pn- 1, and a non-
singular divisor D of multidegree d = (d1, ..., dr) where E di = n - 1,
with dim H°(cvc (D O ( - D)) = 1, such that after translating

Furthermore, as in Corollary 3.4, the standard basis in C" determines a
basis of H°(mc) and the "lattice of periods," Ac, of C.
We have two maps p and

Equation (5.1) implies that (suitable translates of) 03C3-1(0398) and p-’(Wd)
intersect in a non-empty open set (in the classical topology). It follows
that 03C1-1(Wd) ~ 03C3-1(0398), since 03C3-1(0398) is an irreducible analytic sub-
variety of C", and by results quoted in §1, 03C1-1(Wd) is a constructible

subset of an irreducible analytic subvariety in C". If we let W be the
Zariski closure of Wd in J(C), then we have 03C1-1(W) = 03C3-1(0398).
Now 03C3-1(0398) is periodic with respect to the full lattice A, c C". That

is, for all 03BB ~ A, (T - 1( e) + 03BB = (T - 1( e). Hence 03C1-1(W) is also periodic
with respect to 03BB ~ A, or equivalently W + p(Â) = W in J(C) for all

03BB ~ A. 1 claim this implies 03C1(03BB) = 0 in J(C), or what is the same 03BB ~ C.
This follows from a general lemma about the subvarieties Wd in J(C).
Let d and d’ be two multidegrees on C; we will say d ~ d’if di ~ d’for all
i. C ~ Pn-1 is any canonically-embedded Gorenstein curve with

pa(C) = n.

LEMMA 5.3: Let d ~ d’ be two multidegrees on C with d = (d1, ..., dr),
d’ = (d’1, ..., dr), where d = 03A3 di ~ n - 1, and all di, d’i ~ 0. Assume there
is an effective divisor D’ of multidegree d’ with

Then, if a E J(C) and
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we have

PROOF: This is well-known when C is a smooth curve, and we will

prove it using the same method here. The point a ~ J(C) represents an
isomorphism class of line bundles of multidegree zero, from which we
choose a representative, L. Letting Pl’...’ Pr be the fixed (smooth) base
points on the components of C, the condition (5.2) on a translates into
the following statement about L:

for all D’ of multidegree d’. However, by hypothesis there exists a divisor
of multidegree d’ imposing d’ independent conditions on sections of cvc,
so by the Riemann-Roch theorem

as well. Hence the corresponding point a ~ J(C) lies in Wd-d’. Q.E.D.
Returning to the proof of theorem 5.1, and letting d = d’ in the

lemma, we see that if there exists a D of multidegree d as in theorem 3.9
with dim H°(cvc Q (9(- D» = 1 then any a E J(C) such that Wd + a = Wd
must be zero. This conclusion also clearly holds if (Wd + a) n Wd is

Zariski-dense in Wd.
In fact, this is the case for all the a = p(2) for 03BB ~ A:W + p(2) = W,

and Wd is a Zariski-dense constructible subset of W such that dim(W
- Wd)  n - 1 at every point. Hence (Wd + 03C1(03BB)) n Wd is Zariski-dense
in Wd. It follows that p(2) = 0 in J(C), and hence AA £ C in Cn.
Now it follows immediately that A. Ac. Let 03BC ~ C and note that

p -1(W) + Il = 03C1-1(W). Hence e + 03C3(03BC) = e in A. This implies 03C3(03BC) = 0
in A, since 0 defines a principal polarization. So C ~ AA, and the as-
sertion above follows from the pair of inclusions.
Now if C is our curve, rank C ~ 2g + 03B4, where g = g(C) and

03B4 = 03A303B4p (ô, are the local invariants of the singular points). But pa(C)
= g + ô = n, so if rank Ac = 2n, than C must be a smooth canonical
curve of genus n in Pn-1.

Composing the Abel map u on C with a (which is the same as p) we
obtain a (holomorphic) map 0: C ~ A, and it is clear that A is biration-
ally equivalent to C(n) (symmetric product) and 0398 is birationally equiva-
lent to C(n-1). (Since C is irreducible the multidegree d is just n - 1). It
follows immediately that (A, 0) is the canonically polarized Jacobian of
C. Q.E.D.
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REMARKS: (1) It may be true that the conclusion of theorem 5.1 is

valid even without the hypothesis that (*) holds for the local parametri-
zation of 0, near p.
One way to prove this might be to make a careful study of the C of

degree 2n - 2 in Pn-1 with dimH0(03C9C) &#x3E; n. If Example 3.6 (including
the generalizations mentioned in the remarks following that example)
turned out to be typical of this case, that is, the corresponding trans-
lation manifolds were always projections of products of Wd’s in the
Jacobians of the components of C, then (*) could be omitted from the
hypotheses of theorem 5.1.

(2) It is hoped that this characterization of nonhyperelliptic Jacobians
in terms of the geometry of the theta-divisor may eventually shed some
light on moduli questions.
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