Dimension of convex hyperspaces : nonmetric case
Compositio Mathematica, Volume 50 (1983) no. 1, p. 95-108
@article{CM_1983__50_1_95_0,
     author = {Van de Vel, M.},
     title = {Dimension of convex hyperspaces : nonmetric case},
     journal = {Compositio Mathematica},
     publisher = {Martinus Nijhoff Publishers},
     volume = {50},
     number = {1},
     year = {1983},
     pages = {95-108},
     zbl = {0574.54036},
     mrnumber = {719070},
     language = {en},
     url = {http://www.numdam.org/item/CM_1983__50_1_95_0}
}
Van de Vel, M. Dimension of convex hyperspaces : nonmetric case. Compositio Mathematica, Volume 50 (1983) no. 1, pp. 95-108. http://www.numdam.org/item/CM_1983__50_1_95_0/

[1] J. Eckhoff: Der Satz von Radon in konvexen Produktstrukturen II. Monatsh. für Math. 73 (1969) 7-30. | MR 243427 | Zbl 0174.53701

[2] R.E. Jamison: A General Theory of Convexity. Dissertation, University of Washington, Seattle, Washington, 1974.

[3] J.D. Lawson: The relation of breadth and co-dimension in topological semilattices. Duke Math. J. 37 (2) (1970) 207-212. | MR 258687 | Zbl 0199.32301

[4] J.D. Lawson: The relation of breadth and co-dimension in topological semilattices II. Duke Math. J. 38 (3) (1971) 555-559. | MR 282891 | Zbl 0243.06004

[5] J. >Van Mill and M. Van De Vel: Subbases, convex sets, and hyperspaces. Pacific J. Math. 92 (2) (1981) 385-402. | MR 618073 | Zbl 0427.54006

[6] J. Van Mill and M. Van De Vel: Equality of the Lebesgue and the inductive dimension functions for compact spaces with a uniform convexity. Coll. Math., to appear. | MR 857852 | Zbl 0609.54025

[7] M. Van De Vel: Pseudo-boundaries and pseudo-interiors for topological convexities. Diss. Math. 210 (1983) 1-72. | MR 695220 | Zbl 0528.52004

[8] M. Van De Vel: Finite dimensional convex structures I: general results. Top Appl. 14 (1982) 201-225. | MR 667667 | Zbl 0506.54027

[9] M. Van De Vel: Finite dimensional convex structures II: the invariants. Top. Appl. 16 (1983) 81-105. | MR 702622 | Zbl 0556.52001

[10] M. Van De Vel: A selection theorem for topological convex structures, to appear. | MR 1169083 | Zbl 0781.52002

[11] M. Van De Vel: On the rank of a topological convexity. Fund. Math. 119, to appear. | MR 731813 | Zbl 0558.52005

[12] M. Van De Vel: Dimension of convex hyperspaces. Fund. Math., to appear. | MR 753019 | Zbl 0557.54026