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INFINITESIMAL VARIATIONS OF HODGE STRUCTURE (II): AN
INFINITESIMAL INVARIANT OF HODGE CLASSES

Phillip Griffiths and Joe Harris

This is the second in the series of papers on infinitesimal variations of
Hodge structure begun in [3]. There we introduced five invariants associ-
ated to an infinitesimal variation of Hodge structure and investigated the
geometric interpretation of the first one. In this paper we shall study the
geometry of the third construction, given in Section 1(c) of [3].

This invariant is associated to the pair (V, y) consisting of an infinites-
imal variation of Hodge structure V ={H,, H?4, Q, T, 8} of even weight
n=2m and Hodge class y € H, " H™ ™. If we think of V as a Ist order
variation, with tangent space T, of the Hodge structure { H,, H?*9, Q},
then the invariant is a linear subspace

Hm+1,m—](___y) C Hm+1,m—]

such that the quotient space H™*'m~!/fgm*1m=1(_y) is naturally
isomorphic to the co-normal space of the subspace

£&€ T such that y remains of type (m, m) when the cT
Hodge structure moves infinitesimally in the direction £ :

In case V arises from a family
X—->S, S= SpecC[s',...,a’], e/ =0

of polarized varieties and y is the fundamental class of an algebraic cycle
T' € X where X is the reduced fibre of X — S, then there is a geometri-
cally defined subspace

Hm+l,m—l(_r) ;Hm+],m—|(_.y).

(Note: Actually, we shall study all the subspaces H”*9(—y) C H?'9 where
p > q, and for these there are corresponding geometrically defined sub-
spaces H?9(—T)C H?'9(—v). In particular, H*"%(—T) is defined by
the position of T relative to the canonical system |K ,|.) Our first main
result is for the situation I' © X C P? where T is a smooth curve and X is
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208 Phillip Griffiths and Joe Harris [2]

a smooth surface containing I'; the theorem computes the dimension of
H*°(—v)/H*°(-T) as h'(Np,p3). A consequence is that when the
degree of X is large (relative to the degree of I') and I' has general
moduli, then the equations of I' are given purely in terms of the Hodge
theoretic data (V, y); it is this phenomenon that we should like to
understand.

In a sense the simplest subvarieties (other than complete intersections)
lying in a projective variety X are the linear subspaces A contained in X.
Obviously it is of interest to be able to recognize which Hodge classes are
fundamental classes of such linear spaces, and in Section 4(b) (cf.
Theorem (4.b.2)) we give a first result of this kind. This result first
appeared in [8], but here we give a different proof that extends to prove
the following rather unexpected theorem (cf. (4.b.26)): “Let Tc X c P?
be as above with fundamental class y € H?( X, Z). Suppose now that we
are only given a Hodge class y with the same numerical properties and
that deg X is large relative to the numbers y?, v+ @ (w = ¢,(0(1))). Then
v is the fundamental class of an effective curve I' on X.” This result
implies very subtle behaviour of the intersection of the “variable sub-
space” H'!'(X) with the “fixed lattice” H?( X, Z).

In Section 4(c) we discuss the infinitesimal variational aspects of the
question of when a Hodge class on a smooth surface X C P® remains
effective under Ist order deformations. Some of this discussion is a
special case of that in Section 4(a), but in the earlier section we choose to
ignore crucial scheme-theoretic considerations in order to get to the
essential point as quickly as possible. It is worthwhile pointing out that,
although both Sections 4(b) and (c) are centered around the question of
when a Hodge class on XC P? is effective, the two discussions are
complementary. Taken together they give a fairly reasonable picture of
the scheme of pairs (X, I') where I' ¢ X c P®. However certain crucial
questions remain open; for example: Let R, , C|Op:(d)| be the set of
smooth surfaces X C P of degree d where the Picard number p(X) > k
+ 1. Then is codim R,, >d— 3 with equality holding only for the
component of R, given by surfaces containing a line? (More generally,
it is easy to check that the component of R, , consisting of surfaces
containing k coplanar lines has codimension k(d — 3) — (¥32) in |Op3(d).
One may conjecture that this is the codimension of R ,.)

As an application of Sections 4(b) and (c), in Section 4(d) we show
how to reconstruct the Fermat surface F, C P> (d > 5) from its universal
infinitesimal variation of Hodge structure. Actually, the proof gives a
global Torelli theorem (in the form that a variety is uniquely determined
by its universal infinitesimal variation of Hodge structure) for the family
9, of smooth surfaces X C P* of degree d that contain d — 5 sets of d — 3
coplanar lines (it is well known that F,€ %,). Although our Torelli
theorem is to some extent now subsumed by the recent result of Donagi
[5], our proof is of a geometric character (rather than algebraic, as in [5])
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and illustrates very clearly our general premise that an infinitesimal
variation of Hodge structure may at least to some extent serve as a
surrogate for the theta divisor in the classical case of curves (in this
regard, see the Schottky discussion in [5]). The argument also clearly
points out the necessity of refining the data consisting of a Hodge
structure alone in order to obtain geometric results.

In Section 4(e) we study the pair (V, y) corresponding to a 2-plane I'
lying in a smooth fourfold X c P> Although the global result from
Section 4(b) is lacking (the Hodge conjecture is not known if deg X > 5)
we are able to establish the analogues of the infinitesimal results from
Section 4(c); in particular, we obtain the equalities

{HB"(—T)=H3"(—Y) (deg X>1)
H*°(-T)=H*°(-y) (degX>7).

Partly the point here is to give computations involving Hodge classes and
the “middle” Hodge groups H?? (p = 0, ¢ = 0).

The setup in both Sections 4(c) and (e) was first considered by Bloch
in [2]. Part of our results may be interpreted as proving that certain
subvarieties satisfy his condition of semi-regularity.

In Section 4(f), as an application of the infinitesimal Max Noether
theorem in [3] and interpretation (4.a.3) of our infinitesimal invariant of
Hodge classes, we may easily show that many smooth curves C C S C P3,
where S is a smooth surface of degree > 4, have indecomposable normal
bundles. Actually, the result is true for deg S > 2 (cf. also Hulek [10]),
but the remaining cases require a separate argument. An amusing off-
shoot is the formula

dim( H>°(—y)/H>°(-C))
= dim{ker e: H°(O-(d—4)) > H'(K(-4d)))}

where e € H'(K (4 — 2d)) is the extension class of 0 — Ncs = Nc,ps =
Ns,p3 ® O — 0. Taking Section 4(a) and the main result of [6] into
account, it follows that both sides are zero if C has general moduli.

In closing we should like to express our opinion that the geometry of
the infinitesimal invariant of Hodge classes has turned out to be richer
and more general than we originally thought (initially, it was designed to
only study Hodge lines leading up to the Torelli for Fermat surfaces),
and our study raises more questions then it answers.

We should also like to express particular gratitude to the referee, who
did a marvelous job of deciphering and subsequently improving our
original manuscript.
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4. Infinitesimal invariants associated to Hodge classes
(a) The basic observation

An object of increasing interest in algebraic geometry is the global
subvarieties of moduli spaces defined by considering all varieties of a
certain type and having an additional specified geometric property. For
example, the subvariety M, , < M, of the moduli space of curves, which
consists of smooth curves having a linear series g/, seems certain to play
an important role in the global moduli theory of curves (cf. [9]). As a
second example, we let U be a neighborhood (in the analytic topology) of
a surface S in its global moduli space (assumed to exist). We may
topologically identify all the surfaces S’ € U, and for a fixed class
vy € H*(S, Z) we define

U =(s'eU:yeH(S)).

It is possible to show that U, is open in its Zariski-closure in the moduli
space of S (cf. [12]).

In the first example the local structure of 97 , is one of the main
concerns of Brill-Noether theory. In particular, when the Brill-Noether
number

p=g—-(r+1)(g—d+r)<0
we have the “postulated dimension formula”
dim M, ,=3g—-3+p

which gives at least a first approximation to dim 9N} ,. Moreover the
Zariski tangent space is given by

T(@R,;d) = (image ;.Ll)l
where

po: HY(C,L)® H(C,KL™"Y)-> H°(C, K)
U
p,:kerp, ————— H(C,K?)

are the usual maps of Brill-Noether theory [1]. The object of this section
will be to analogously study the infinitesimal theory of the varieties U,
and their generalizations.

We first recall from Section 1(c) of [3] the third invariant introduced
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there. Let V={H,, H”? Q, T,8) be an infinitesimal variation of
(polarized) Hodge structure of even weight 2m and y € H;*" a Hodge
class. Then we defined:

Hm+k,m—k(_.y)
={yeH™kmk. 0(8%(¢)y,y)=0 foralléeT). (4.a.1)

As motivation we consider a family of polarized varieties { X, )}, and
suppose that V' is the infinitesimal variation of Hodge structure corre-
sponding to X = X in this family. We denote by U a neighborhood of s,
in S and as above we identify all the H*( X, Z) for s € U. Given a Hodge
class y € H™"™( X, Z) we define

U= {s€ Uiy H""(X,,2)).

Using the Lefschetz decomposition it will suffice to consider only primi-
tive cohomology, and then assuming that y € H2" (X, Z) we have

prim

U={seU:Q(¢,y)=0forally € F"*'H2" (X,)}). (4.a2)

prim

The tangent space to U, at s, is obtained by differentiating the equations
(4.a.2), and with the notations

T =T, ()
U U
T,=T,(U,)

it is given by

T,={¢(€T:Q(8(¢)y,y)=0forallye H"* "~ 1), (4.2.3)
Thus we have

0= B (—y) > H™ WU S T () =0,
and the number

Bl =iy

is codimension of the Zariski tangent space to U,. ) T For this reason we
are led naturally to ask if there is an effective way of computing

 These numbers refer to notes at the end of the paper.
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hmtkm=k(—y) at least in first approximation? It turns out that this
question contains a surprising amount of geometry.

A key step is the following trivial observation: Suppose that
{H,, H?9, Q, T, 8} arises from an infinitesimal family

X
l

S = Spec(C[s',...,s™] /m?)

of polarized varieties. If we denote the reduced fibre by X, then H, =
H?*"(X,Z)NH*"_(X) and the polarized Hodge structure { H,, H”%, Q)

is the usual onepon primitive cohomology. The tangent space is given by
T =(m/m?)*, and 8§ is induced by composing the cup-product and
Kodaira-Spencer mappings (cf. Section 2(a) of [3]). Suppose also that vy is
the primitive part of the fundamental class of a codimension-m algebraic
cycle

I‘=Zn,.Z,

on X. (¥ We define the support of T to be
o(l)=v 2z,
i
and denote by I, the ideal sheaf of o(I'). We shall use the notation
Hm-—k( X, Q?-ﬁ-k( _ r))

to denote the image in HJ *(X, Q%)= H"**"~* of the composite
map

H™ (X, Q4% @ Ip)) = H™F( X, Q%) > HInk (X, Q3%).

With this understood we have the

OBSERVATION:

H™ %( X, Qp*k(=T)) c H"**m=k(-y). (4.2.4)

PROOF: Since for §{ € T and k > 2, the definition (4.a.1) immediately gives
that

g. Hm+k,m—k(_,y) = Hm+k—l.m—k+ l(_,Y)
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it will suffice to verify (4.a.4) when k= 1. Let y € H" (X, Q% *(-T"))
and let ¢ € T with

p(§)=0€H'(X,0).

Then

0(8(8)9,7)=[ 8- vy

=En,-f20¢

=0.

since y vanishes on the Z;,. Q.E.D.
When n=2 and X=S is a smooth surface, (4.a.1) is the linear
subsystem of the canonical system given by

H*°(—y)={y€ H**: Q(8(£)¥,y)=0 forall{ € T).

Also, I' = Tn,C, is a (virtual) curve and (4.a.4) is (where we set H>°(—T)
= H°(S, Ks(—o(T))

H(S, Ky (~o(T))) € H*(~) (4a.5)

where o(T) = XC, is the support of I'. We shall discuss the question:
Under what circumstances can we expect equality in (4.a.5)? As will now
be seen this has (to us) a suprising answer.

Let C c P? be a smooth curve of degree m and genus g, and denote by
N — C the normal bundle. We recall that C is said to be non-special in the
sense of Brill-Noether if

H'(C,N)=(0); (4.2.6)

in particular, by the Gieseker-Petri Theorem this is true if C has general
moduli (cf. [1]). We shall assume that C is a smooth point on the Chow
variety E of curves of degree m in P?; it is well known (cf. [11]) that this
is true if (4.a.6) is satisfied. (Note: For the result (4.a.7) to be proved
below it may not be necessary to make this assumption, but it simplifies
the argument technically.)

We denote by U C |O,3(d)| the Zariski open set of smooth surfaces S
of degree d in P3, and

U(-C)cU
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will denote the subset of U consisting of the smooth surfaces passing
through C. We assume d is large enough that U(—C)= ¢, and for
S € U(—C) we consider the infinitesimal variation of Hodge structure
{Hy, H, Q, T, 8} corresponding to H, = H?*(S, Z)NH},;,(S) and
with tangent space T = Ty (U) corresponding to all variations of S in P>,
Finally, we denote by

yEH*(S,Z)nH!! (S)

prim
the primitive part of the fundamental class of C.

PROPOSITION: There exists an integer d(m, g) depending only on the
degree m and genus g of C C P> such that for d > d(m, g) and S € U(— C)

h°(S,Kg(=C))=h*°(—y)—h'(C,N). (4.2.7)
In particular, if C is non-special in the sense of Brill-Noether then
H°(S,Ks(=C))=H*"(=7).

COROLLARY: If C is non-special in the sense of Brill-Noether, then the
equations of C C S are given purely in terms of the fundamental class of C
and infinitesimal variation of Hodge structure of S in P>, (4.a.8)

PROOF OF COROLLARY: Recalling that y is the primitive part of the
fundamental class of C, C is the base locus of the linear subsystem
H>%(—y) < H(S, Ky).

PrOOF OF ProPOSITION: Shifting notation slightly, we now let = be a
smooth open neighborhood (Zariski or analytic; it doesn’t matter) of C in
the Chow variety of degree m curves in P3, Then by the Riemann-Roch
theorem for vector bundles over C

dim £=h°(C,N)=4m—h'(C,N). (4.2.9)
We denote by
U-cU

the subvariety of smooth surfaces S that contain some curve C’ € = (thus
set-theoretically

U.= U U(-C)).

U
C'e

In giving the following argument we shall make a couple of dimension
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counts whose rigorous justification necessitates careful analysis of certain
scheme structures. Since this analysis will be carried out in detail in
Section 4(c) below in a special case (however, cf. remark (4.c.18)), but one
where the techniques may be easily modified to apply in general, we shall
not do this here.

We now focus attention on our curve C € . From the adjunction
formula

g=5'(C2—cl~C)+l (cl'—_“Cl(KS))
=3(C*+m(d—4))+1,
it follows that C? <0 for large d. Thus
hO(C’ ®C(C)) =0
where O.(C) = 0,(C) ® O is the normal bundle of C in S, and there are
only a finite number of curves C’ € = that are contained in S. In
particular, assuming that d is large enough to have 4'(Op3(d) ® I)=0

for i =1, 2, we may compute the codimension of Uz near S as follows
(this is one step that will be justified more rigorously in Section 4(c)):

codim Uz = h°(0ps(d)) —h°(Ops(d) ® I) — dim =
=h°(0.(d)) —dim =
=md—g+1—4m+h'(C,N)
for d > d(m, g), by the Riemann-Roch theorem for C and (4.a.9).
We now consider a neighborhood (in the analytic topology) W c U of
S and set
W(-C)=WwnU(-C)
We=Wn Uz.
By choosing W sufficiently small we may topologically identify all the
surfaces S’ € W, and with the identification H*(S, Z)= H?*(S’, Z) we
define
W,=(S"€ W:yis of type (1, 1)}.
This is an analytic subvariety and clearly

W.c W,.
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LEMMA: We have that

We=W,. (4.a.10)
PRrROOF: If L — S is the line bundle corresponding to C, then according to
the general variational theory of cohomology classes it will suffice to
prove that

h'(S,L)=0. (4.a.11)

Indeed, for (S,) C W, a variation of S = S, there will be a (unique since
Pic®(S,) = (0)) holomorphically varying family of line bundles L, — S,
with ¢,(L,) =y, and by obstruction theory (cf. [1]) the sufficient condi-
tion that the section s, € H°(S,, L,) defining C be stable under small
deformations is just (4.a.11).

By the Riemann-Roch theorem for surfaces,

R'(S,L)=X(S,L)—h(S,KsL™")—h°(S, L)

1(C?+Ce))+X(65) —hO(S,KsL™") —h°(S, L)

H(C*=Coc))+Crey+1+h°(Ops(d—4) 1) -1

=4(C?=C-c;)+ Crc; +h°(Oc(d—4))

=g—1+C-c,+m(d—4)—g+1

= O,
where we have used the adjunction formula for C C S and Riemann-Roch
theorem for h°(O.(d — 4)) (assuming, of course, that d is large enough
that h'(O.(d — 4)) = 0). Q.E.D. for the lemma.

Finally, we shall estimate codim W, Hodge-theoretically (again, the
details for justifying this dimension count will be given in Section 4(c)):
We have by (4.a.3)

codim W, = h*° = h2%(—y)  (h>°=h>°(S))
=h°(S,Kg)—h°(S,Ks(—C)) +e (4.2.12)
where ¢ = h2%(—y) — h*%(—=C) > 0 by (4.a.5)
=h"(0ps(d—4)) —h%(Op:(d—4) ®I.)+e

=m(d-4)-g+1+e
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by the Riemann-Roch theorem for C. Comparing this with the formula
for codim Uz = codim Wz and using lemma (4.a.10) gives that

e=h'(C,N)

in (4.a.12). By the definition of £ we conclude the proof of the Proposi-
tion. Q.E.D.

ReEMARK: Using lemma (4.a.10) let us agree to call the formula
“codim W= =h°(S, Kg) —h°(S, Ks(—0o(T)))”

the ndive Hodge dimension count. This means: we count the number of
geometrically apparent (at first glance) conditions that a variation of S
should contain a variation of C; by (4.a.10) and (4.a.5) this number is
ho(S, Kg)—h°(S, Kg(—o(T))). On the other hand, the naive dimension
count for = is the formula

“dim = =h°(C,N)”;

for the reasons explained in [1] we shall refer to this as the ndive
Brill-Noether dimension count. Then the proposition says that the niive
Hodge dimension count and niive Brill-Noether dimension count both
fail by the same amount. This certainly suggests some interesting relation
between Hodge theory and geometry.

(b) Lines on surfaces (i)

Let SC P3 be a smooth surface of degree d containing a line A with
fundamental class A € H2(S, Z). Then X satisfies the conditions

N=2-d
A-w=1where w=c,(0(1)) (4.b.1)
Ae HV'(S).

DEFINITION: A class A € H%(S, Z) satisfying the conditions (4.b.1) will
be called a Hodge line.

In this section we will give a proof of the following result (cf. [8] for
the original proof):

THEOREM: A Hodge line is the fundamental class of a unique line A C S.
(4.b.2)
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Given a Hodge line A there is a unique holomorphic line bundle L — §
with ¢;(L)=A, and one may try to use the Riemann-Roch theorem for
L — S. This gives
h°(S,L)+h°(S,K—L)>h%(0ps(d—4))— (d—4). (4.b.3)
To be able to use this we must know that

h°(S,K—L)<h®(Ops(d—4))—(d—-3),

and as will be seen below this is almost tantamount to assuming the
theorem. (¥ However, when d = 5, (4.b.3) gives

ho(S,L)+h°(S,K—L)>3.

We want to show that
h°(S,L)=0,

and if this were false then
h°(S,K-L)>3.

Any effective divisor D € |K — L| satisfies

dim|D|=n>2
D*=(w—2A)"=0
D - H =4 where H is a hyperplane.

If any pencil from |D| has a fixed component E, then we must have
deg E=1, 2 or 3. If deg £ =2 or 3 then S contains a pencil of rational
curves, which implies that S is rational. If deg £ =1 then S contains a
pencil of elliptic or rational curves, and must then be an elliptic or
rational surface. In all cases we obtain a contradiction to the fact that
|Kg| is very ample.

It follows that the linear system |D| gives a holomorphic map

¢:S->TcP”,

whose image ¢(.S) cannot be a surface, and therefore must be a curve I'.
Since S is regular, I' must be a rational curve non-degenerately embedded
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in P" by a complete linear system. If n>2 then |D|= ¢~ '(O (1)) =
|¢ ™ '(Opi(n))| and the mapping ¢ is the composition

S—>P!' P
¥ n

where 7 is given by |Opi(n)|. Since deg D=4, deg ¢~ '(¢)< 2 for t € P!
and S again contains a pencil of rational curves, which is a contradiction.
This establishes the theorem when d = 5.

Turning to the general case, we choose a smooth curve

ce|\mH-L| m>0,
where H = Og(1) is the hyperplane bundle. We want to show that

For m sufficiently large there is a surface R of degree m not containing S
and such that

CcSNR. (4.b.4)
In this case
S‘R=C+ A

where A is the desired line. Establishing (4.b.4) involves examining the
postulation sequence of C, and this is what we shall do. ¥ We first
record the relevant data concerning the degree d(C) and genus g of C:

d(C)=md—-1
Ke=0.((m+d—4)H-L) (4.b.5)
g=3(m+d—4)(md-2),

where the last step follows from (4.b.1) and the adjunction formula.
We next choose a general hyperplane divisor D = P?- C and consider
the commutative diagram:

0 0 0
i) ) !

0T (k—1)—>0p:(k—1)=0s(k—1)>0
! ) J

0- I.(k) — Opsi(k) — O.(k) —0
) l l

0 (k) = Opa(k) — Oy(k) —0
) l l

0 0 0
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where I C Ops is the ideal sheaf of C and I, C Op: is the ideal sheaf of
D. A piece of the cohomology diagram is

0 0 0
i l i
Pi—1

0> HO(I(k—1)>H(Ops(k—1)) > H®(O(k—-1)—H'(Ic(k—1)—0
i i ! A

0= HIu(k) - H(Ops(k) o HOOe(k) — H'(I(k)—0 (4.b.6)
i"'k l l

0 HUp(k) — H°Opa(k) — H(Oy(k) —
l i

H'(Ic(k =1) 0

We use the notations

{Vk=pk(H°(eps(k)))CH"(@c(k)) oe=dmVe e

W= ok(HO(sz(k))) < HO(QD(k)) w, = dim W,

so that w, =h%Op2(k))—h°(I,(k)) is the number of conditions im-
posed by D on |O,:(k)l. We thus have

v, —v,_,=w,+dimker/,, k>0,v_,=0;
in particular v, — v, _, > w,,

4.b.
with equality holding for all & if, and only if, (4.6:8)

C is projectively normal. ¢

We set
Ve =W = Wi

and note (as will be explained more fully below) that y, is the dimension
of a linear series cut out on a line P! c P2, (®

We now denote by I' the intersection S - P2; we may assume that T is
a smooth plane curve of degree d and _

Cc-I'=D

is a divisor of degree md — 1. We will study curves ®, €|0:(k)| that
pass through D. We have

(i) if 0 <k < d then no curve ®, passes through D; and

(ii) if d < k < m then any curve ®, through D must contain T'.
Both of these follow from DC T -® and deg D=md — 1 > kd if k < m.
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If we define

least integer such that there exists a
" | curve ®, not containing I' and passing through D

then n > m and from (i) and (ii) we have

wk=(k;:2) k<d
wk=(k42~2)_(k—;1+2) d<k<n.
This gives

Ye=k+1 O0<k<d-1
Ye=d d<k<n-1.

A crucial step in the proof is provided by the

LeMMA: For k > n, either y, <y, _,ory,_, =0.

PrROOF: Let P! C P2 be a general line and set
U =Im{H(1p(k)) —> H*(Op: (k)))

u, = dim U,.

221

(4.6.9)

(4.5.10)

Since Ho(I,(k))D> T - H%(Op2(k —d))+ @, - H°(Op:(k — n)), and since
we may assume that P! misses the intersection ® N T, it follows from
k> n that U, c H°(Opi(k)) is a base point free linear subsystem, and

that the image of
Ueoy ® H2(0p:(1)) > HO (01 (K))
contains U,. On the other hand
we= K52 =110
Ve = W= Wi
= (k+1) = (h°(Ip(k)) = h*(Ip(k = 1)));

Vel = Ve =We—we — L.

Lemma (4.b.10) then follows from the
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LemMMA(Gieseker): Ler U ¢ H(Opi(j)) (j =k — 1, k) be base point free
linear systems such that

U._, ®H°(0p:(1)) > U,. (4.b.11)
If dim U, = u,, then either

u,>u,_;+1
orelse u, =k (i.e., U_,=HOp(k—1))).

PROOF: Set U= U, _, € H°(Op:(k — 1)) and u = dim U. Then by Koszul’s
complex we have

0—-E- U®®pl(1)—)®pl(k)—)0,

where E is a vector bundle of rank u — 1 over P'. Since by assumption
we have

0->HE)->U®H(0p:(1)) > U,
it follows that
u,>2u,_,—h°(E). (4.b.12)

To estimate h°( E) we use Grothendieck’s decomposition to write

1

E=- & 0(1).

1

Since ¢,(E) = u — k the conditions on the /, are

{l;il:u_k (since O(Z;) c U®@p'(1))' (4.b.13)
We let

a=#{(i:l,=1)

B=#(i:l,=0)

y=#{:l<-1).
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Then h°(E)=2a + B, and by (4.b.12) and (4.b.13)
u,—u,_,>u—h°(E)
=u—(2a+pB), (4.b.14)
a—y=degE=u—k; and
a+B+y=rank E=u—1.
Adding the last two and substituting into (4.b.14) gives
U, —u,_,=2k+1—u,

from which Gieseker’s lemma is an immediate consequence. Q.E.D.
Using (4.b.9) and (4.b.10) we may picture the graph of y, as a function
of k as follows:

y

? (here y, is strictly
decreasing)

/

V
Ve

d—1 n—1 k

From

w,=md— 1 k>0

Ve =Wk = Wi
wy=1landw_,=0

it follows by telescoping that

y=md—1, k>0. (4.b.15)

k
=0

1
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On the other hand, by the cohomology diagram (4.b.6)

#(Oc(k)> D

£

(k—i+1)y, (4..16)

Il
it

I
it

By the Riemann-Roch theorem for C, for k > 0

g=kdegD—h°(0.(k))+1
k k
<k(zy,)—}:<k—f+1>y,+1-,
i=0 i=0
g< X (i=1)y+1, (4.b.17)
i=0
which by (4.b.5) gives

%(m+d—4)(md-—2)<f:(i—l)y,+l. (4..18)

At this stage, using (4.b.9), (4.b.10), and (4.b.15) our result will be a
consequence of the following combinatorial

LEMMA: Let {y,}, k=0, 1, 2,..., be a sequence of non-negative integers
satisfying

n=k+1 O0<k<d-1

Ye=d d<k<n—-1,n>m

Vi <Yk-r10ry,,=0 forn<k

oo
Y y=md-1 (= shaded area in above figure).
i=0
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Then

i(i—1)y,+1<%(m+d—4)(md—2)
i=0

with equality holding if, and only if, n=mandy,,_,, =d—jforj<d-—2,
ym+d—2 = O'

In other words, the sum in (4.b.17) is maximized, subject to the con-
straints (4.b.9), (4.b.10), and (4.b.15), by the figure

d-1 m—1 m+d-—2

We will not give a proof of this lemma, which may be found in [12].

Using it and comparing with (4.b.18), it follows that n = m and that
(4.0.17) and (4.b.16) are equalities. From the definitions (4.b.7) and
cohomology diagrams (4.b.6) for all k, it follows that

n=m, and
p, s surjective for all k.

Thus Cc P3 is projectively normal, and consequently 7, in (4.b.6) is
surjective for all k. Therefore there exists a surface R € |I-(m)| which
cuts out the curve ® € |I,(m)| in P2, and this is the surface required in
(4b.4). Q.E.D.

We ask now how far this argument can be pushed. One extension is
immediate: we can replace the “line” in (4.b.2) by a “plane curve” of
degree € < d. Specifically, the class A of a plane curve of degree ¢ on the
surface S will satisfy

{}\2=e(e—d+l)

4.b.19
Aw=¢ ( )

and we claim that in fact

THEOREM: Any class A € H(S)N H*(S, Z) satisfying (4.b.19) is the
fundamental class of a plane curve of degree ¢ contained in S, unique if
e<d—2. (4.b.20)
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ProOOF: The proof follows exactly the same lines as that of (4.b.2). We let
L, C and D be as before, but instead of (4.b.5) we have

d(C)=md—e¢
{g=w(m,d,s)=%(md(m+d—4)—£(2m+2d—£—5)+2)
(4.b.21)

As before, we analyze the sequences v,, w, and y, for C and D, and again
find that the sequence y, must be extremal; specifically, we have the

LEMMA: Let {y,} be a sequence satisfying the first three conditions of
(4.b.19), but with ¥y, = md — €. Then

Y(i—1)y+1<n(m,d,e) (4.b.22)
with equality holding if, and only if n = m and

d—j for j<d—-1-¢
d—j—1 for d—e<j<d-1
0 for j>d-1

ym-l+/=

In other words, the sum (4.b.17) is maximized by the figure

y

(4.b.23)

| | k
d-1 m—1 / m+d—2
m+d—1—c¢

Thus, as in the case of Hodge lines, we see that C must be projectively
normal, and that D lies on a curve of degree m in P2 not containing T, so
that C lies on a surface R of degree m not containing S. Writing

R-S=C+E

we see that E is a plane curve of degree € and class A. Q.E.D.
Note that this argument establishes as well the

COROLLARY: If A is an integral class of type (1, 1) on S, and A - w =¢e < d,
then

N<e(e—d+1). (4.b.24)
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PRrOOF: If A> > ¢(e — d + 1), then for the curve C appearing in the proof
of the theorem we have #(C) > n(m, d, €). Tracing through the proof of
that result, this latter inequality violates the first statement in lemma
(4b.22). Q.E.D.

More generally, we have the

COROLLARY: If A is an integral class of type (1, 1) on S, writing
Aw=1ld+¢ (4.6.25)
with 0 < e < d then
N<lPd+e(2l+e—d+1).

PrOOF: This is just corollary (4.b.24) applied to the class A — /w.
The next question to ask, clearly, is what about classes A of “degree”
A-w=-¢ with A <e(e — d+ 1) — or, equivalently, with virtual genus

7(N)=

}\2+(d—24)7\—w+1<(s—1)2(£—2)‘

(Note that #(A\) may be negative, as in the case of a pair of skew lines.)
To answer this, let 8§ represents the defect (e; 1)— 7(N) of the virtual
genus of A; equivalently, write

N=¢g(e—d+1)-28.

Clearly, theorem (4.b.20) cannot be true as stated for classes A with
defect & > 0. Surprisingly, however, it is true if the degree d of S is large
enough compared to ¢ and 8. Precisely, we have the

THEOREM: Let S be a smooth surface of degree d, \ an integral class of type
(1, 1) on S with

ANw=c¢
N=¢g(e—d+1)—28.

e, 7= (%] 1y 8). Assume d> ¢+ 8+ 2. Then A is the class of an
effective divisor on S. (4.b.26)

PrOOF: The proof follows, at first, the same lines as those above: If we
let L be the line bundle on S with Chern class A, m >0, and C an
irreducible smooth curve in the linear system |mH — L|, then we find that

d(C)=md—¢
g=m(m,d,e)—8
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where 7(m, d, ¢) is given by (4.b.21). We let D, T, w,, and y, be as
before. Here, of course, y, need not be the sequence specified in (4.b.23),
inasmuch as we know only that

Y(i—l)y+1>n(m,d, e)—8.

There is, however, one thing we can say, using our assumption that d is
large, and that is that

n=m
or, equivalently. that
V,=d-1,

or, equivalently, that D lies on a curve of degree m not containing I'. To
see this, note that if we add 1 to y,, in the sequence represented by
(4.b.23), we have to subtract 1 from some y,, , and the first j for which
we can do this without violating the condition that {y,} be strictly
decreasing (cf. (4.b.10)) in this range is j=m + d— 2 —¢. From this it
follows that if { y,} is a sequence satisfying the conditions of (4.b.22) and
such thaty, =d,

Y(i—1l)y<n(m,de)—d+2+e.

Since our present curve C has genus g=a(m, d, e)—8>aw(m,d, e)—d
+ 2 + ¢, we conclude that y,, = d — 1 and hence that D lies on a curve of
degree m not containing I'.

We now encounter the second difficulty in applying the previous
argument: since C need not be projectively normal, the fact that D lies on
a curve of degree m not containing I' does not insure (as it did before)
that C lies on a surface R of degree m not containing S. Indeed, from the
sequence

0-9cps(k—1)>Icps(k) > Ipp2(k)—>0

we see that the space of curves of degree k in P2 containing D, modulo
those which are restrictions of surfaces of degree k containing C, has
dimension exactly

dim ker /,

where /, is the map in diagram (4.b.6). What we can do, however, is to
bound this discrepancy: since by (4.b.8) and (4.b.16), we have

g<Y (i—1)y—Y dimker/,
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we have in our present circumstances

Y dim ker /, < 8.
k

From this we may deduce the

LeMMA: For some v, 0 < v < 8, the linear series |9-(m + v)| in P* cuts out
the complete series |$,(m + v)| in P2, 4.b.27)

Now, let » be as in Lemma (4.b.27). The series |9.(m + »)| of surfaces
of degree m + » through C then cuts out on S the complete linear series
|E|=m+v)H — C|=|vH + L|. We now make the

CrLam: The base locus of the linear series |E| is a curve E;C S with
fundamental class \. (4.b.28)

To see this, consider the series cut out on I' by | E|. To begin with, since
the divisor D lies on a curve of degree m not containing I', we can write
onT

mH~D+F

for some effective divisor F of degree ¢; in fact, we have O (F)=L ® O.
The linear series | E| on S thus cuts out, on the general hyperplane section
I' of S, the complete linear series

|Ellr=|(m +»)H - D|
=|vH + F|

What does this linear system on I' look like? The key point here is the

LEMMA: Let T be a plane curve of degree d, F an effective divisor of degree

e on I'. Then for any v such that d — 1 > v + ¢, the linear series |vH + F| on

I has F as fixed divisor; i.e., it consists of the linear series |vH| plus F.
(4.b.29)

PROOF OF LEMMA. Write F=p, + ... +p,, let L,C P? be a general line
through p;, and write

Li'r=Pi+qi,1 R o/ PP

Then the complete linear series [vH + F| will be cut out by curves of
degree » + & passing through the ¢(d — 1) points {g;,}. But by Bezout’s
theorem any curve of degree » + ¢ <d — 1 passing through ¢, ,,..., g; ,_,
must contain L,, and the lemma follows. Q.E.D. for (4.b.29).
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Applying the lemma in our present circumstances (which we may do,
since by hypothesis d>8+ e+ 2>v+¢+2), we see that the linear
system |E| on S cuts out on I' a linear system with fixed divisor exactly F.
The fixed divisor E, of |E| is thus a curve on S whose restriction to I is
F. Since O.(F)=L ® O, then, we conclude that for a general hyper-
plane section I" of S,

Og(Ey)®O0p=L®0,
and hence that
Og(Ey,)=L.
This establishes our claim (4.b.28) and thereby our theorem (4.b.26).

REMARK: The variational form of Theorem (4.b.26) will be discussed
below (cf. remark (4.c.18)).

As an example we may take
C=L,+...+L,
where the L, C P? are non-intersecting lines. Then for S a smooth surface
passing through the L, and with A denoting the fundamental class of C,
the virtual genus
a(A)=—e+1.
Our theorem then implies the interesting fact:
If S is a smooth surface of degree
d>L(+e+4) (4.b.30)
that contains a Hodge class A with
AMw=c¢
a(A)=—¢e+1,
then necessarily
A=A+ A,
Where the N, are Hodge lines.

PrROOF: By Theorem (4.b.26), A is the fundamental class of a curve C.
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Assuming that all components of C are reduced, it is clear from ()=
—e + 1 that C must have > ¢ irreducible components, while from A - w=¢
it follows that C must have exactly ¢ components L, each of degree one.
Thus L, is a line, and these lines must be pairwise disjoint. Now take A, to
be the fundamental class of L.

It remains to justify our assumption that all components of C have
multiplicity one. Suppose first that

C=2A+C (4.b.31)

where A is a line and C’ is an irreducible curve of degree ¢ — 2. Using the
formula

7(D+E)=a(D)+#(E)+(D-E)—1 (4.b.32)
for divisors D, E on S, we have

7(C) < (8—3)2(8—4)

(since the genus of C’c P? is maximized when C’ is a smooth plane
curve);

=>1—e<1—d+(—8—l§lz(—‘°'——i)+2(s—2)—1

But our assumption on d rules this possibility out.

Now suppose that C is any effective divisor having at least one
non-reduced component. Then an easy computation using (4.b.32) shows
that #(C) is maximized when C is of the form (4.b.31). From this it now
follows that our C must have all components reduced. Q.E.D.

This result shows that the variable Hodge decomposition

H=H*°(S)® H"'(S) ® H**(S)
intersects the fixed lattice H; C H in an extremely subtle manner.
(c) Lines on surfaces (ii)
Let SCP? be a smooth surface of degree d>3 and denote by

{(Hg, H?9, Q, T, 8} the infinitesimal variation of Hodge structure on
Hy, = H*(S, Z)N H},;,,(S) whose tangent space T= H°(S, O5(d)) corre-
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sponds to all infinitesimal deformations of S in P>, Let A C S be a line
with fundamental class A. In this section we shall prove the following (cf.
(4.a.5))

THEOREM: With the above notations we have
HO(S,KS(—A))=H2'°(—>\). (4.c.1)

Since this result is infinitesimal its proof will require a scheme-theo-
retic study of both Hodge-theoretic and projective conditions that a
surface contain a line (the latter is certainly well-known to experts). For
this we denote by

d+2

y,cpts !
wcu,

respectively the family of smooth surfaces S € |O,3(d )|, and those S that
contain a line.
Projective study. We begin by proving that

codim W=d - 3. (4.c.2)

For this we denote by W, C U, the subvariety of surfaces that contain a
fixed line A. The exact cohomology sequence of

0 0ps(d) ® I, > 0ps(d) > 0,(d) =0
gives
0= HO(0p1(d) 8 1) = HO(Op(d)) = HO(0(d)) 0.
Since #1°(0,(d))=d + 1 this implies that
codim W, =d + 1. (4.c.3)

Finally, since the Grassmannian G = G(1, 3) of lines in P> has dimension
4, (4.c.2) follows from (4.c.3).

We will reestablish (4.c.2) and at the same time give a natural
desingularization of W. For this we consider the incidence correspon-
dence

IcU,xG
defined by

I={(S,A): ACS).
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Denoting by =, and =, the respective projections, we begin by noting that
ford>3

77 '(S) = (set of lines A C S}

is finite. (Proof: Denoting the hyperplane class by w, the class A of any
line satisfies

N=2-d Ao=1. (4.c.4)

From the Hodge index theorem it follows that the number of solutions
A € H*(S, Z) to the equation (4.c.4) is finite. Since h°(Og(A))=1 our
claim follows.) The proof of (4.c.3) gives that

7, '(A) = {set of surfaces S D A}
=W,

has codimension d + 1 in U, X G. Putting these two observations together
yields

codim W = codim =, (1)

=codim I — dim G.
=d-3.

For our infinitesimal purposes we need the
PROPOSITION: [ is smooth (including reduced). (4.c.5)

PrROOF: We begin by identifying tangent spaces. Assuming that S € U, is
given by

E,(x)=F0(x0,x1,x2,x3)=O,

tangent vectors F; € T¢(U,;) may be considered as variations Fy(x)+
tF\(x) (ie, Tg(U,)=Sym?C*/C - F,). Next, we also think of G as
2-planes in C* and use the standard isomorphism

T,(G) =Hom(A, C*/A).
Explicitly, if A is given parametrically by
x:P'>p3
where

x(SO’ sl) = [SO’ Sl, 0’ 0]’
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then any arc {A,} in G with A;= A and with tangent vector ¢ corre-
sponding to the 2 X 2 matrix ||¢, ,, || (i,j =0, 1) is given parametrically
by

x(t,5)= [50 + 1o (5), 5, + 1A (5), t(50P02 + 510125

t(5o%o3 +51¢13)] +(...)

where (...) are higher order terms in ¢ and A, A, are linear functions of
s. The condition that

{=(F,¢)e Tis 0, (U; X G)
be tangent to [ is

F(x(t,5))=0mod 2. (4.c.6)
Setting

6(x(s) = Lell?)

0

t
(4.c.6) is

3 aF0

Fi(x(s)) + Z

) é(x(s))a=0.¥ (4.c.7)

Equivalently, we consider the map
Y Tisy (UyX G) > HO(6,(d))

given by sending (F}, ¢) to the polynomial on the left-hand side of
-(4.c.7). It is clear that ¢ is surjective and the sequence

0= Tis0)(1) = Tis 0y (Uy X G) = H°(6,(d))—0
is exact (for any S € |0ps(d))). This proves that the Zariski tangent space

to I is everywhere of codimension 4 + 1, which establishes (4.c.5). Q.E.D.
We will next show that

PROPOSITION: The map 7, : I — U, is everywhere of maximal rank. Thus
W is the union of smooth branches each of codimension d — 3. (4.c.8)

Proor: The differential

(7’1)* (S, A)(I) - T (Ud)
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is given by
(Fy,¢)— F (4.c.9)

where (F,, ¢) satisfies (4.c.7). The kernel of (4.c.9) is given by fields of
tangent vectors to P2

3

£= 3 o(x(s)).d/3x,

a=0
defined along A and satisfying
§-F=(dF,§)=0

along A. Thus § is tangent to S along A and gives a section &
H°(O,(N, /) of the normal bundle to A in S. Since Ny ,s=0,2-4d)
we have h7(0,(N, ,5))=0 ford>3. Q.E.D.

REMARK: As indicated in Section 4(a), the same result holds if we replace
A by any smooth curve C € P with h'(N¢,p3)=0, G by an irreducible
Zariski neighborhood X in the Chow variety corresponding to C, and W
by smooth surfaces of sufficiently high degree passing through some
C’ € Z. Moreover, if we assume that = is smooth (scheme-theoretically),
then we may drop the condition A'( N, p3)=0.

Hodge theoretic study. Given a smooth surface S € U, containing a line
A, we denote by V a neighborhood (in the analytic topology) of S in U,
and by V), the subvariety of surfaces S’ € V that contain a line A’ close to
A. More precisely, V, is the intersection of V with the branch of
W = a,(I') determined by A. By (4.c.8), V), C V is a smooth submanifold of
codimension d — 3.

We may assume that the S’ € V are diffeomorphic to S by a diffeo-
morphism preserving the hyperplane class, and we denote by A’ &
H,(S’, Z) the class corresponding to the fundamental class A of A. The
condition that A’ be of type (1, 1) defines the following subscheme
v,crv:

Va={8"eV:(y,N)y=0 forall ye H*(S)). (4.c.10)
By Theorem (4.b.2) we have

support V, = V,.
PROPOSITION: The schemes V, and V), coincide. (4.c.11):

Assuming the proposition we shall complete the proof of Theorem (4.c.1),
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and then we shall give the proof of (4.c.11).
Proof of Theorem (4.c.1): We first note the

LEMMA: The codimension of H°(S, K¢(—A)) in H°(S, K) is d — 3.
(4.c.12)

ProoF: This follows from

HO(S, Ks) = H®(0p:(d - 4))
H(S,Ks(—A))=H(0ps(d—4)® 1))

and the exact cohomology sequence of
0> 0p:(d=4) ® I, = Ops(d—4) > 0, (d— 4) - 0.
Q.E.D. for Lemma.

Recall that {H,, H”*%, Q, T, §) denotes the infinitesimal variation of
Hodge structure on H, = H*(S, Z)N szrim( S') with tangent space

T=Ty(U,)=H°(85(d)).
The Zariski tangent space to the scheme V, given by (4.c.10) is (cf. (4.a.3)
Ts(Vy)={(¢€T:(8(§)Yy,A)=0  forall yeH*).

From the definition (4.a.1) it follows that Ty(Vy) has codimension h*° —
h%*%(=X) in T4(V) (i.e., of the h*° equations that define Tg(V}), exactly
h*% — h29(—X) are independent). We then have

d—3=h°(S,Kgs)—h°(S, Ks(—A))
by (4.c.12)
<h*°—p20(=2) (4.c.13)

by (4.a.5)
= codim Ty (V)

=d-3
by Proposition (4.c.11). It follows that (4.c.13) must be an equality, i.e.
h°(S, Ks(=A))=h*°(=X),

which proves the theorem.
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PROOF OF PROPOSITION (4.c.11): With the notation Ny, for the normal
bundle to X in Y we have exact sequences

(@) 0—— 08— O5(A)— N,y s—0
(b) O0——N, s >Ny yp —Nsp 0,0 (P= P’)
() 0—N;p(—A)—Nsp—Ns)p®0,—0

A piece of the exact cohomology diagram is

— HZ(G)S)&— H'(N, ;s)<— H'(O5(A)) < ...

| I

0 A 0
—— H(Ng,p)—H(Ng )p ® 0,)—> ... (4.c.15)

la

HO(N, /o)
f

(the top row is the exact cohomology sequence of (a), the vertical row
that of (b), and the bottom row that of (c)). We note the interpretations: ()

B~ !(image a) = infinitesimal deformations of S in P such that there is
an infinitesimal deformation of A C P> that remains in
S.

It follows that

ker(y o B) = infinitesimal deformations of S C P> under which A is
stable (i.e., A moves with §S).

We note finally the interpretation

ker(8 ° y ° B) = infinitesimal deformations of S P*® under which A
remains of type (1, 1) (the verification of this requires a
computation-c.f. [2]).

Combining the interpretations it follows that the proposition is equiva-
lent to:

ker(8 o yo B)=ker(y° B). (4.c.16)

We will prove this by showing that 8 is injective (this implies semi-regu-
larity in Bloch’s sense).
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The dual of the top row of (4.c.15) is the top row of

C— HO(S, KS)_S*’HO(N/(‘/S ® Q/‘\) —>H1(®S(A))* ..
s , Sl
H°(Ops(d—4)— H°(O,(d—4))  (r=restriction),

(4.c.17)

where we have used that
N, s=0,(2-4).

The commutativity of (4.c.17) is again a straightforward verification, and
Proposition (4.c.11) follows from the obvious surjectivity of the bottom
row in (4.c.17). Q.E.D.

REMARK: We may view Proposition (4.c.11) as an infinitesimal analogue
of Theorem (4.b.2). However, the proof gives also an infinitesimal
analogue of Theorem (4.b.26), as follows: Let A C P =P? be a smooth
curve and S €|0,(d)| a smooth surface containing O. Define V, and V)
as before (using the Chow variety to replace the Grassmannian, as was
done in 4.a)). Then: (4.c.18)

If W' (1,(d — 4)) = h'(I,(d)) =0, then proposition (4.c.11) is still true.
(4.c.19)

PROOF: In the diagram (4.c.15),
h'(I,(d))=0= Bis surjective.
Moreover, as in (4.c.17) the dual of the top row in (4.c.15) is

e B0 (d=4) > HO(0,(d = 4) > H'(85(A))* = -+

where 8* is the usual restriction map. Thus, from the exact cohomology
sequence of 0 > I,(d—4) > 0p(d—4) - 0,(d—4) >0,

h'(1,(d—4)) =0= 8*is surjective.
= § is injective.

Consequently, (4.c.16) holds and the argument is just as before. Q.E.D.



[33] Infinitesimal variations of Hodge structure (II) 239
(d) Infinitesimal variation of Hodge structure for Fermat surfaces

We denote by F, the Fermat surface
xd+x{+x{+x{=0 (4.4.1)

of degree d in 3. These surfaces have been the object of considerable
recent study (cf. [13], [14], and [15]). Given any smooth surface S €
|Op3(d)| we denote by

V(S)={(Hz,H", Q,w,T,8)

the infinitesimal variation of Hodge structure with (i) H, = H?(S, Z); (ii)
H??= HP9(S); (iii) Q = cup-product form on H,; (iv) w = ¢,(O4(1)) is
the polarizing form; (v) T= H%(Op3(d))/H’(Op:) is the tangent space
to |Ops(d)|/PGL at S; and (vi) 8 is the usual differential of the variation
of Hodge structure. We note that szrim(S, Z)={y € Hy: Q(¢Y, w)=0},
and that from V(S) we may construct the usual polarized Hodge
structure ¢(.S) associated to szrim(S’ Z). We also note that §(§)w =0
for all £ T, and that

8:T— Hom(Hz'O, Hg;‘im)
is injective. !©) Thus V(S) gives a point ¢(S) € D, the classifying space
for polarized Hodge structures, together with a subspace T C T (D)
(more precisely, V(S) gives a point in I'\ D, and we choose a lift
@(S) € D of this point). In this section we will prove the following

THEOREM: (i) If S € |Ops(d)| is a smooth surface of degree d > 5 with
V(s)=V(F,), (4.d.2)

then S is projectively equivalent to F,. (ii) The automorphisms of V(F,) are
exactly the automorphisms of P that leave F,, invariant.

The idea is, of course, to use the lines in S. The proof will show quite
clearly that just giving the Hodge structure does not seem sufficient to
reconstruct the Fermat surface, and we also feel that there are automor-
phisms of the polarized Hodge structure on H2(F,, Z) that are not
induced by automorphisms of P>,

We begin by describing the configuration of lines on F,.

DEFINITION: A star is given by set of d coplanar lines in P? all passing
through a common point.
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Briefly, a star consists of d members of a pencil of lines in P*. In suitable
homogeneous coordinates [ y,, ¥, J», )] the plane of the star is y; =0,
the common point is y, =y, = y; = 0, and the lines are

Yy =A p=1,...,4d. (4.d.3)
We will say that the star is special if we can take

=g = (4.d.4)
Intrinsically, the lines through [1, 0, 0, 0] in the plane y, =0 form a P!
and these d points in P' should be the orbit of a single point under a
cyclic automorphism. It follows that, if d > 4, not every star is special.

It is well known that there are 6d special stars of lines on F,, and
that every line belongs to exactly two stars. For example, setting §{ =
e™'~1/4 and fixing an integer p with 1 < pu < d, the lines given parametri-
cally by

[10. ;] [tngytOv tl’gutl]

form a star lying in the plane
£y, —»=0

and passing through the point [0, 0, 1, £*]. The other stars are obtained
by applying the automorphisms of F, to this one (cf. [13], [15]).

Thus there are 34?2 lines on F,, and two lines meet if, and only if, they
belong to the same star. We will denote these lines by L,, where
p=1,...,d indexes the lines in a star and i = 1,..., 6d indexes the stars.
With this labelling every line appears twice. We will also denote by
\,., € H*(F,, Z) the respective classes of these lines.

Now let S CP? be a smooth surface with the same polarized Hodge

structure as F,. Thus there is an isomorphism
n: H*(S,2Z)> H*(F,,Z) (4.d.5)

that preserves (i) the polarizing class w = ¢;(0(1)); (ii) the intersection
form Q; and (iii) the Hodge decomposition. Using n we will identify the
two cohomology groups, and will denote by (H,, H”*9, Q, w} the Hodge
structure on H, = H*(F,, Z).

By Theorem (4.b.2) there are lines A, , C § whose fundamental classes
are A, . We can even say that the lines

A Ay i fixed,
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are coplanar. ( Proof: First, using the intersection form any two of these

lines must intersect in a point. Choose three from among them; say A, ,
A, ,, A;,. Then these are the possibilities:

Al 1] AZ

\p/
VA A, /\Az

N

As,

W
(i) (if)

In case (i) it is clear that all three lines lie in a plane. This is also true in
case (ii), since they must lie in the tangent plane 7,(S).) In summary,
using only the Hodge structure we may say that S contains 3d? lines that
fall in 6d sets of d coplanar lines, and that every line belong to exactly
two of these sets. But it is not at all clear that each set forms a star, much
less a special star. For this we must use the infinitesimal variation of
Hodge structure.

We now assume that d > 5 and that (4.d.5) is induced by an isomor-

phism of the infinitesimal variations of Hodge structure corresponding to
S and F,. (Equivalently, the period map

¢o:U,»T\D
should satisfy the conditions
?(S)=9(F,)

T (9(Uy)) = Ty (0(U)))

We may thus identify the spaces (cf. (4.a.1)) H*°(=A,, ) for S and F,.
Denote by A, ,, L,, the respective lines on S, F, with fundamental
classes A, . Then by Theorem (4.c.1) the isomorphism (4.c.5) induces

n: H(S,05(d—4) @1, )>H(F,. 0. (d—4)®L, )"
(4.d.6)

(Note: we do not know yet that (4.d.6) is induced by a linear automor-
phism of P? — in a certain sense this is the whole point). Using (4.d.6) we
will now show how to distinguish between the possibilities (i) and (ii) on
S. Although not logically necessary for the proof this will show clearly
the use of the infinitesimal variation of Hodge structure. We claim that
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the possibilities (1) and (ii) correspond respectively to

H*°(=X )+ H*°(=X,,)+H*°(=\,;,)=H>°

H>°(=X\, )+ H*°(=A,, )+ H**(=X;,) = H>°.

PROOF: In case (i) we may assume that the lines all lie in the plane y; =0
and are given by y, =0, y, = 0, y, = 0 respectively. It is then clear that the
union of their ideals consists of all homogeneous forms of positive
degree.

In case (ii), all the forms in
H*°(=X, )+ H*°(=X,, )+ H**(=A;,) c HO(S, 05(d — 4))

vanish at the common point p. Q.E.D. for the claim.

At this juncture we now know that the 6d sets of coplanar lines on S
fall into stars, and presumably using the automorphisms of the infinitesi-
mal variation of Hodge structure we could even show that these are
special stars. Instead, we will give a direct argument for (i) in Theorem
(4.d.2).

For this we consider the intersection

NV (=N,,) = H(=7) € HO(S, 8(d = 4)),

where the equality is a definition. Since the lines A,, are coplanar,

H?*°(—m) consists of the forms in H(S, O5(d — 4))= H(P?, Op:(d —

4)) that vanish on a plane P?c P> (This is because any form P&

H?>%(—m) will either vanish on P? or will cut out a curve I of degree

d — 4. The latter is impossible since I' must contain the d lines A, ,.)
We next consider the intersection of d — 5 of the H*°(—=); say

d->5
M H>(=x). (4.4.7)

i=1

The elements in this intersection are all of the form
P(x)=L(x)L,(x)...L,_s(x)

where L,(x) defines P2 and L(x) is an arbitrary linear form. In other

words, if ¥V'=HC(S, O5(1))* is the four-dimensional vector space such
that § = PV, then the intersection (4.d.7) is natural<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>