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INFINITESIMAL VARIATIONS OF HODGE STRUCTURE (III):
DETERMINANTAL VARIETIES AND THE INFINITESIMAL

INVARIANT OF NORMAL FUNCTIONS

Phillip A. Griffiths

Compositio Mathematica 50 (1983) 267-324
 1983 Martinus Nijhoff Publishers, The Hague. Printed in the Netherlands

This is the third in our series of papers concerning infinitesimal varia-
tions of Hodge structure. In Section 1 of the first paper we associated five
invariants to an infinitesimal variation of Hodge structure V =

{Hz, Hp,q, Q, T, 03B4} (actually, the fourth invariant 03B4v was associated to
an infinitesimal normal function, which is a slight refinement of V). In
the preceeding papers we studied the first two invariants, and in this
paper we shall study the third and fourth of these.

Recall that V is given by a polarized Hodge structure {Hz, Hp,q, Q} of
weight n together with a linear map

satisfying certain conditions. (1)* The ( n - 2k)th iterate of 8 induces

Associated to this data are the determinantal varieties

and in Section 5 we shall discuss these in the extreme cases

for infinitesimal variations of Hodge structure that arise from geometry.
Therefore, for L - X a line bundle over a smooth n-dimensional variety
X (assume ILl has no base points), we are interested in the map

given by cup product. The points p E PHn(X, KL-2) = PH0(X, L2)*
such that 03BA(p) has rank  l turn out to have a very nice projective
interpretation when 1 = 1 and when l=h0(X, L)-1 (cf. Theorems (5.2)

* These numbers refer to notes at the end of the paper.
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and (5.17)). (2) Applying these results to variation of Hodge structures
requires understanding the image

where

is the polarized determinant map used in Section 2, and we are only able
to determine (*) in special cases (cf. the fundamental problem (5.21)). (3)

In the case of curves the rank one transformations in the image of

turn out to be closely related to the classical Shiffer variations, which by
definition are nonzero classes 03B8P ~ H1(C, 8) lying over points ~2k(p) ~
PH1(C, 0398) on the bicanonical curve (cf. (5.13)-(5.15)). A corollary is yet
another construction of a general curve of genus g &#x3E; 5 from its infinitesi-
mal variation of Hodge structure. (4)

In Section 6 we discuss the infinitesimal invariant 03B4v associated to a
normal function v. (5) Although motivated by elementary considerations,
this invariant seems to be rather subtle and its construction occupies all
of Section 6(a). To illustrate the problem, we let D, = 03A3lpl(s) - ql(s) ~
Div’(C,) be a family of degree zero divisors on a family (CJ of curves,
and we consider the classical abelian sum

where the 03C903B1(s) ~ H0(Cs, K ) give a basis. What we want to do is simply
ïntrinsically interpret the differential dUs(Ds). The problem in doing this
is that there is no obvious canonical identification of all the Pg-1 ’s of the
canonical curves ~K(Cs). More or less equivalently, the universal family
(Hg  Cg)/Z2g ~ 3C of principally polarized abelian varieties is not a
homogeneous manifold (it is only acted on by Sp(2g, Z)). (6)

However, we are able to intrinsically interpret at least part of dus(Ds),
and to give in general a definition of 8 v for a normal function v. The
problem then arises of geometrically interpreting 03B4v in case v arises from
geometry; i.e., arises as the Abel-Jacobi images of a family Zs ~ Zh(Xs)
of algebraic cycles on a family XS of smooth varieties. For curves this is
accomplished by Theorem 6.16, a result that involves somewhat unusual
cohomological considerations.

As a first application of this formula, in Section 6(c) we consider the
map v ~ (03B4v)(03B40) for the Kuranishi family of curves {Cs}s~S centered at
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C = Cso, and where v ranges over all normal functions associated to

families of divisors Ds E Div0(Cs) with D,. fixed. The result (cf. Theorem
(6.28)) may be viewed as an extension of the Brill-Noether matrix to a
variable family of curves. The proof of (6.28) uses Shiffer variations in an
essential way.

Another application of the formula (6.17) is to genus four curves. On
two occasions (in Sections 2 and 5) we have seen now to reconstruct a
general curve of genus g  5 from its infinitesimal variation of Hodge
structure. On the other hand, for obvious reasons this is not possible for
genus g  3. Now when g = 4 the two g13’s define (at least up to ± 1) a
normal function v over moduli, and in Section 6(d) we show how to
reconstruct a general such curve from 8 v. (7)

In Section 6(e) we extend the basic formula (6.17) to higher dimen-
sions (cf. (6.45)). As a small application we give some conditions under
which 8 v = 0 (cf. (6.49)). We have, however, not yet applied 8 v to any
substantial geometric problems in higher dimensions; in (6.51) we men-
tion one interesting possibility along these lines.

Finally, Section 6(f) is purely speculative. A primitive algebraic cycle
Z on a smooth variety Y ~ Pr defines a normal function v over the space
S~Pr* of smooth hyperplane sections of Y, and v essentially depends
only on its fundamental class z ~ Hm,mprim(Y)~H2m(Y, Z) Conversely,
every such Hodge class z arises from a normal function v. Therefore, for
obvious reasons one would like to have some method of constructing Z
(or, more precisely, all the cycles whose support has bounded degree and
which are homologous to Z) from v. What we do in Section 6(f) is show
how at least some of the "equations" of Z (or of cycles homologous to Z)
may be constructed from 03B4v. This result is in the same spirit as Theorem
4.e.1, which however dealt with very special circumstances.

To show that this construction is not vacuous, we conclude the paper
by computing an example (cf. (6.59)) where, in a very simple case, we
construct cycles with given fundamental class by using 03B4v. (8) The con-
struction makes sense in general, but of course we have no idea whether
or not it always leads to non-trivial algebraic cyles.

It is a pleasure to thank the referee for numerous corrections and
suggestions concerning the original version of this paper.

5. Determinantal varities associated to an inf initesimal variation of Hodge
structure 

(a) Let V = {Hz, Hp,q, Q, T, 03B4} be an infinitesimal variation of Hodge
structure of weight n (cf. Section 1 for definitions and notations). Given
e e PT we shall denote by 03B4(03BE): Hp,q ~ Hp-1,q+1 

a linear transforma-
tion given by 03B4() for any non-zero vector ~T lying over e. Recall the
iterated differential
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where Hom(s)(V, V*) denotes the symmetric maps from a vector space V
to its dual, and where the isomorphism Hk,n-k ~ (Hn-k,k)* is given by
the bilinear form Q restricted to Hn-k,k X Hk,n-k.

DEFINITIONS: (i) We define Ek,l ~PT by

(ii) with hn,O = dim Hn,0 we set

(iii) and finally we set

REMARKS: We may view the linear transformations 03B4(03BE1)...03B4(03BEn-2k) ~
Hom(s)(Hn-k,k, Hk,n-k), where 1, OE T, as generating a linear system of
quadrics parametrized by P(Symn-2kT) on the projective space

P(Hk,n-k)*. Among these the quadrics of rank  1 form in a natural way
a determinantal subvariety Lk,l (the equations of this subvariety are given
by all (1 + 1) (l+ 1) principal minors of a symmetric matrix whose
entries are linear functions on Symn-2kT). The variety Ek,l is thus the
intersection of Lk with the image of the Veronese embedding P T - P
Symn-2kT . 

There is a somewhat more natural subvariety

defined by

(here, G ( m, Hn-k,k) is the Grassmannian of m-planes in Hn-k,k and
039B ~ G(m, Hn-k,k) is a typical m-plane). This subvariety Ek,1 will be used
in Section 6 below (under the notation LI)’ We remark that, via the
obvious projection

k,l is a natural candidate for a desingularization of ’Ek,l (cf. Chapter 2 of
[1]).

Our goal in this section is to interpret geometrically the extreme cases
03A8 and Z of the varieties E:k,l in case the infinitesimal variation of Hodge
structure arises from geometry.
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(b) Suppose that L - X is a holomorphic line bundle over an n-dimen-
sional smooth variety X. We denote by

the natural mapping given by the sections in H0(X, Lk), where we recall
that via Serre duality there is a natural identification

In particular we shall consider the two maps

together with the natural map

where the right-hand side are the symmetric maps given by the identifica-
tion (5.1) when k = 1, and where K is given by the cup-product

For 03BE~PHn(X, KL-2), we write 03BA(03BE) for any transformation 03BA()
where 4 E=- Hn(X, KL-2) is a non-zero vector lying over t.

DEFINITION: We define L C PHn(X, KL-2 ) by

THEOREM: Assume that (i) IL has no base points, and (Ü) the natural map

is surjective. Consider the image 992L(X) c PHn(X, KL-2). Then

with equality holding if, and only if, 99L(X) is cut out by quadrics. (5.2)

The following argument was kindly communicated by the referee:
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PROOF: We consider the commutative diagram

where: P 1, P2, P3 denote the indicated projective spaces, v is the
Veronese map (whose image consists of the quadrics of rank one), and K
is induced by dualizing the natural map

The commutativity of (5.3) is immediate by writing the maps out in terms
of sections. Write

and consider

Then

From the commutativity of (5.3) it follows that

and hence by (5.5)

Moreover, keeping in mind that ~2L(X) spans P3 we have:



273

Under our assumption that (5.4) is surjective, rc is injective so that by
(5.5)

Comparing these last two equivalences completes the proof of the theo-
rem. Q.E.D.
We note that the proof gives the following

COROLLARY: Under the assumptions of (5.2), the variety of rank one
transformations in

is isomorphic to the intersection of the quadrics through 99L(X), (5.7)

Finally, suppose we denote by ~L(p1)... CPL ( Pk) the secant plane to
99L(X) determined by ~L(p1), ..., ~L(pk). Then since any linear combi-
nation of k transformations of rank one has rank at most k, we have the

COROLLARY: Every point q E WL ( P 1 ) ... TL pk determines a transforma-
tion v(q) of rank  k in

In particular, when k = h0(X, L ) - 1 the transformation v(q) is singular;
we will return to these in Section 5(d) below.

(c) For applications to variation of Hodge structures we are interested in
rank one transformations in the image of the composite mapping (9)

As we have seen in Section 2, except when n = 1 the mapping a will
generally fail to be surjective (cf. Theorems 2.b.10 and 2.c.8). In fact, it is
not at all clear that in general the intersection

will be non-empty, so there may well be no rank one transformations in
the image 03B4nT of the nth iterate of the differential in an infinitesimal
variation of Hodge structure arising from geometry. In this case, accord-
ing to Corollary (5.8) we should look for the intersection of image a with
various secant varieties to ~2K(X).
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However, in case n = 1 the mapping a is an isomorphism, and the
points on the bicanonical curve

have a very beautiful interpretation (we write C for X in the curve case).

DEFINITION: Any non-zero vector 03B8P~H1(C, 8) lying over ~2K(p) ~
PH1(C, 8) is called a Shiffer variation associated to p E C.

Denoting by 0398(p) the sheaf of meromorphic vector fields with a
simple pole at p, the quotient

is a sky-scraper sheaf supported at p with stalk naturally isomorphic to
the 2nd symmetric power of the tangent space to C at p. The exact
cohomology sequence of

gives (assuming that the genus g &#x3E; 1)

The image 03B4((Tp)2) is the line corresponding to CP2 K (p) E PH1(C, 8),
and from the exactness of (5.9) we conclude that:

A Shiffer variation is given by a class 8 E H1(C, 8) such that 0 = 0 in
H1(C, 0 (p» for some p E C. (5.10)
Equivalently, in Dolbeault cohomology we may write

where 11 is a section of 8 that is COO on CB{p} and looks like

near p (here, z is a local holomorphic coordinate centered at p ). Intui-
tively, we may think of 01 as an infinitesimal deformation of complex
structure that leaves CB{p} fixed but changes the structure by a "8-func-
tion" at p (this can be made precise - cf. Spencer and Shiffer [ 14J).

Since ~2K(C) spans PH1(C, 8), every infinitesimal deformation is a
linear combination of at most 3g - 3 Shiffer variations when g &#x3E; 2.
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In a sense, Shiffer variations are the analogue for deformations of
complex structure on C of the canonical curve (PK (C) c PHI (CI O) for
deformations of line bundles on C. From this point of view it is

noteworthy that they have not played a more significant role.
From the theorem of Enriques-Babbage-Petri (cf. [1], [6], tor [13]) and

Theorem (5.2) we have the following conclusions for C a curve of genus
g  2: .

Every Shiffer variation 0, ~ H1(C, 8) gives in Hom(s)(Ho(C, K),
H1(C, O)) a transformation of rank one with kernel ~K(p) = {03C9 E Ho
(C, K):03C9(p) = 0); (5.13)

In case C does not have a 92, g13, or gs every rank one transformation in
H1(C, 8) is a Shiffer variation; (5.14)

Under the conditions of (5.14) the curve C is uniquely determined by its

infinitesimal variation of Hodge structure. In particular, the generic global
Torelli theorem holds when g  5. (5.15)

Rank one transformations for curves of genus 4 will be discussed in
detail in Section 6(d) below.

PROOF OF (5.13): Referring to the proof of (5.2), for each p E X there are
the hyperplanes

in H0(X, L ). To prove (5.13) it will suffice to show in general

and then apply this result when X = C and L = K. To prove ( * ) we
consider the long exact sequence of global Ext’s associated to

where Ip c U is the ideal sheaf of p. This sequence together with its dual
gives (we omit reference to X)
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Using the identifications

we have

By naturality of cup product and duality, the mapping 03B1(p) ~
Hom(s)(H0(X, L), Hn(X, KL-1)) is given by composing the usual Ext
pairing

with the inclusion

Under this pairing, for s and r in H0(X, L ) (and abusing notation
slightly by choosing an identification Cp ~ C and letting p~Cp corre-
spond to 1 ~ C)

It follows that ~P~s,r~ = 0 for all r if, and only if, s(p) = 0. This
proves ( * ). Q.E.D.

PROOF OF (5.14): By the aforementioned theorem of Enriques-Babbage-
Petri, the hypothesis is equivalent to the surjectivity of (5.4) (in the case
X = C, L = K ) and the image CPK(C) being cut out by quadrics. Now
apply Theorem 5.2. Q.E.D.

PROOF OF (5.15): The infinitesimal variation of Hodge structure

{Hz, Hp,q, Q, T, 03B4} gives the rank one transformation in 03B4(T) ~
Hom(s)(HI,o, HO,I). By (5.14)

is just the bicanonical curve. In this way we may reconstruct C satisfying
(5.14) from its infinitesimal variation of Hodge structure. Q.E.D.
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(d) We shall now give an analogue of Theorem (5.2) for the determinan-
tal variety 41 associated to an infinitesimal variation of Hodge structure
arising from geometry.
We retain the notations from Section 5(c) above, and as before

consider the cup-product mapping

We want to determine the 4, E Hn(X, KL - 2 ) such that det 03BA(03C8) = 0. To
state the answer, under the assumption that ILl has no base points it will
be a consequence of the proof of (5.17) below that

and so we may define the proper subvariety

by

If dim 1 L = r, then deg ’¥L = r + 1. For each D ~ |L| we denote by

the linear span of the image of D under CP2L. From the exact cohomology
sequence of

(where s E H0(X, L) has divisor ( s ) = D), it follows that

Thus we may form an abstract projective bundle together with a map

where 03C0-1(D) is the projective space CP2 L ( D) and where | 03C0-1(D) is the
inclusion CP2L(D) c PHn(X, KL - 2 ).
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THEOREM: We give the image

the image scheme structure, and then we have the equality of schemes

PROOF (10): To establish the set-theoretic equality we argue as follows:
Given 03C8~Hn(X, KL-2) we have det 03BA(03C8) = 0 if, and only if, there is
s E H0(X, L) such that for all t E H0(X, L)

This is equivalent to

Now s·H0(X,L)~H0(X,L2) determines and is determined by the
linear subspace

where D = ( s ), and this establishes the set-theoretic equality in (5.17). In
a moment we shall see that

and this establishes (5.16).
Now we argue as in the proof of the Riemann-Kempf singularity

theorem as proved in Section 4 of [1]. The dual of K is a mapping

that is injective in each factor separately. We consider the incidence
variety

defined by
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Then I is the locus of the equations

where t0,..., tr E HO(X, L) is a basis. By the injectivity in each factor
property of it in (5.18), the equations (5.19) have linearly independent
differentials on each fibre {s} PHn(X,KL-2) of the projection of
PH0(X,L) PHn(X,KL-2) on the first factor. It follows that the

scheme I is reduced and has fundamental class equal to (03C91 + 03C92)r+1
where wl, W2 are the respective standard positive generators of

H2(PHo(X, L), Z) and H2(PHn(X, KL-2), Z). Projection onto the sec-
ond factor (which is just w above) induces a surjective mapping

and since (i) the fibres of ir2 are linear spaces; (ii) the image 03C02(I), being
the support of 03A8L, has dimension &#x3E; N - 1 where h0(X, L2 ) = N + 1; and
(iii) I is irreducible of dimension N - 1, we conclude that if we give
~D~|L| CP2L ( D) = 03A8’L the image scheme structure then %PL’ is a variety of
dimension N - 1 and ir2: 1 - 03A8’L is birational. Moreover the degree of 03A8’L
is given by

Since 03A8’L is irreducible and

we conclude that the two divisors ’¥L = 03A8’L as subschemes of

PHn(X, KL-2). Q.E.D.

COROLLARY: If X is an n-dimensional compact, complex manifold whose
canonical series has no base points, then the singular transformations in the
image of

form a proper hypersurface given by

Because of the results in Section 2 above, if we wish to apply (5.20) to
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variations of Hodge structure for varieties of dimension  2, we are faced
with the following

Fundamental Problem: Given a "geometrically defined " (cf. the example
below) linear subspace W ~ PHn(X, K*), describe the intersection

For example, suppose that ILl gives a projective embedding

whose image has normal bundle N, and take

where p : H0(X, N) ~ H1(X, 8) is the Kodaira-Spencer map. Then, by
Theorem 2.b.10,

where 0393 ~ H0 (X, K2) is the Gauss linear system associated to 99,(X) c
PH0(X, L)*. Moreover, in at least a number of special cases we will
have equality in (5.22). Since r is the linear subsystem of |K2| generated
by ramification loci of all linear projections ~L(X) ~ Pn c PH0(X, L)*,
it is at least a reasonable geometric problem to try and determine

6. The infinitésimal invariant associated to a normal function

(a) We begin by recalling from Section 1 the definition of the infinitesi-
mal invariant 8v associated to a normal function v. The construction

proceeds in several steps.

Step 1 : We consider the Grassmann manifold G = G(k, H) of k-planes
F in a complex vector space H. The standard identification

will be made without further comment. Points in the projectivized
tangent bundle will be denoted by (F, 03BE) where 03BE ~ PTF(G). We denote
by 03BE ~ Hom(F, H/F) a vector lying over t (using the identification
(6.1)).
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Now suppose that

is a holomorphic mapping from a complex manifold S into the Grass-
mannian. We write

where the subspace Fs varies holomorphically with s E S’. We denote by
F, 9C the pullback under cp of the universal sub-bundle, resp. trivial

bundle; thus the fibres are given by

We set T = T(S) and denote points in P T by (s, 03BE) where 03BE~PTs(S).
By slightly abusing notation, we shall let 03BE~Hom(Fs, H/Fs) be any
vector lying over ~*(03BE)~PTFs(G).

The constructions below aré motivated by the following local differen-
tial-geometric problem:

Find the differential conditions that a holomorphic section v E HO(S, H/F)
be given by the projections to H/Fs of a constant vector v E H.

Since there is no GL(H)-invariant connection on H/F there does not
appear to be an obvious solution to this problem. By constructing a
GL ( H )-invariant "partial connection" we shall give necessary conditions
that v be the projection of a constant v E H (cf. the Appendix to this
section).

DEFINITION: We denote by G (1, H/F) ~ S the Grassmann bundle with
fibres G(l, HIF,), and define the subvariety

by

Here A E G(1, H/Fs) is an 1-plane in HIF, and, as explained above,
03BE~ Hom(Fs, H/Fs) is a non-zero vector lying over ~*(03BE). If we define
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by

there is an obvious projection

which, according to the standard theory of determinantal varieties, is a
natural candidate for a desingularization of l.

With the notation

where F~G(k, H), 039B~G(l, H/F), and where 03C0:H~H/F is the
obvious projection, we define bundles O(1), L over PF  G ( l, H/F) with
respective fibres

these are both standard tautological bundles. Given v E H0(S, H/F) we
will define

whose vanishing, for all 1, is a necessary condition that v be induced from
a constant v E H.

For this we let v(s)~H be any local lifting of v(s)~H/Fs and
consider, for any tangent vector e lying in the line Z c 7§ (S ), the vector

If (s) = v(s) +f(s) another lifting of v(s), then f(s)~Fs and

thus
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DEFINITION: For (s, 03BE; 039B)~03A3l we define

by projecting dv(s)/d03BE to H/(Fs + A).

REMARK: This construction is local in s E S and involves choosing a local
lifting of v to a holomorphic section v of 9C. We emphasize that, by
passing to the quotient as above, the end result (03B4v)(s, 03BE; A) gives a
global holomorphic section

Intuitively, Sv is defined by taking, for v a local lifting of v, the part of
d v that has intrinsic meaning. It is clear that 8 v = 0 is a necessary
condition that we be able to choose v(s)~H to be constant (cf. the
appendix to this section).

Step 2: Suppose now that

dim H = 2 k

and

is a non-degenerate alternating bilinear form. Set

It is well-known that GQ is a homogeneous complex manifold of dimen-
sion k ( k + 1)/2. Using Q there is, for each F E GQ, a natural isomor-
phism

With the identifications (6.1 ) and (6.2),

is given by the symmetric homomorphisms
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Suppose now that

is a holomorphic mapping and use (6.2) to make the identifications

Also, use the bijective maps (here the " = 
" is a definition)

to make the identification

When all this is done the variety

defined in Step 1 above has the description

where 039B~Fs is a (k - /)-plane and 1 OE Hom(s)(Fs, F*s) is a vector lying
over *(03BE). If we define

to be the ( k + /)-plane given by

then Q induces a natural isomorphism

extending (6.2) in the case 1 = 0. With these tautological identifications
the fibres of L~PT G(k-l, 9’) are given by
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Given i, (=- HD(S, H/F) we have defined the infinitesimal invariant
8 v E H0(03A3l, O(1) ~ L). To evaluate 8 v, by (6.5) it well suffice to know the
scalars

where 1 OE Ts(S) and a OE ker ~*(03BE) (the equality here is a definition). For
these there is the following useful Leibnitz formula for 8v:

that we now explain. Given (s, 03BE; 039B)~03A3l we choose a tangent vector
03BE~03BE c Ts(S) and arc{s(t)} in S with s’(0) = e. For 03C9~ A ç ker ~*(03BE) we
choose 03C9(t)~ Fs(t) with w (o) = 03C9. Then a OE A implies that

where again the equality is notation. By the definition of 8 v we have

where the last equation is a final definition, one which also defines the
right-hand side of (6.6).

Step 3: Retaining the notations and assumptions of Step 2 we assume
additionally given a discrete subgroup Hz c H with Hz 0 C = H (i.e., in
suitable bases we have H=C2k and Hz = Z2k). We also assume that Q
is real on HIR = Hz 0 R, and define D c GQ by

For F E D we set
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By the conditions in (6.7), Hz projects in H/F ~ F* to a lattice so that JF
is a complex torus.

Given a holomorphic mapping

we define g ~ S’ to be the fibre space of complex tori with fibres

If v E H0(S,g) is a holomorphic section of g, then any local lifting of
v(s) to an H-valued function v(s) is determined up to a transformation

(s)=v(s)+f(s)+03BB(s)

where f(s)~Fs and 03BB(s)~Hz. Since d03BB(s) = 0 we may repeat the
definition of 8 v above to obtain the infinitesimal invariant

of v~ H0(S, g). Again, the vanishing of 8 v is a necessary condition that v
be induced from a constant vector v E H.

Step 4: At last we are ready to define the infinitesimal invariant associ-
ated to a normal function. Let V={Kz, Fp, v, Q, S} be a variation of
Hodge structure of odd weight n = 2 m + 1 (cf. Section 1 for notations),
and recall the associated fibre space g~S of intermediate Jacobians
where, by definition,

Denoting also by g the sections of this fibre space, the Gauss-Manin
connection p induces

Setting

a normal function is, by definition, a section v E HO(S, gh) (that satisfies
a suitable growth condition at infinity in case S is an algebraic variety -
cf. [3]).
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We now recall (cf. Section 5(a)) the determinantal variety

defined by

With the identifications

we have

defined by

There is a natural mapping (denoted by - ~ m,l in §5 a ))

DEFINITION: Given a normal function v~H0(S, gh), the infinitesimal
invariant is the holomorphic section

is defined by the procedure in Steps 1-3 above.
In more concrete terms, given a tangent vector 1 OE 7§ ( S ) and w E Fm+1s

with

we set
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Then Q(03B4v, w ) is defined by Steps 1-3 above, and most importantly is
given by the Leibnitz formula (6.6)

In case v is induced from a constant vector v E H (i.e., v E H0(S, K)
satisfies vv = 0) it follows that 03B4v=0. If S is algebraic then Vis a direct
sum of irreducible variations of Hodge structure plus a trivial variation
of Hodge structure, and for the irreducible factors there will be no
non-zero constant sections of K. Hence we may expect that 8 v should
contain "a lot" of the information from v (cf. the Appendix to this

section).
A more serious problem, one that will be addressed in the following

section, is to geometrically interpret 8 v in case V arises from geometry.
Finally, we remark that by considering base spaces S = Spec C[s1,...,

sr]/m2 we may define 8 v for an infinitesimal normal function. Since it is
by now clear what should be done here, we shall omit further discussion
of this point.

Appendix to Section 6(a)

Robert Bryant has written a very interesting letter concerning the differential geometric
problem posed at the beginning of this section. Namely, let GLl, c G(k, H) be an open set
and suppose given a holomorphic section v~H0(U,Q) where Q~G(k,H) is the

universal quotient bundle. Assuming that rank Q  k &#x3E; 2 we consider 8 v as a section of a
suitable sheaf over -k - 1 =  ~ PT (all of this is of course restricted to U). Then Robert
Bryant proves the following result:

THEOREM: The necessary and sufficient condition that v be the projection of a constant vector
v EH is that 03B4v = 0.

Because of his result we may suspect that there is no other universally defined
differential invariant of normal functions other than 8 v (and, of course, functions of 03B4v).

(b) In this section we shall give a geometric formula for 03B4v in case v is
the normal function associated to a family of divisors on curves. Thus, we
consider the situation

where C, S are complex manifolds and the fibres CS = 03C0-1(s) are smooth
curves of genus g. Let Js=J(Cs) be the Jacobian variety of CS and
suppose that
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is a holomorphic family of divisors of degree zero. Under the usual
abelian sum map

we then have a normal f unction v where

We want to geometrically interpret 8 v.
For this we choose a reference point so E S, replace S by a neighbor-

hood (still denoted by S) of so, set C = Cso, and choose a COO trivializa-
tion

such that F : Cs0 ~ C X {s0} is the identity. The family C - S then gives a
family of complex structures on the fixed C°° manifold C. Moreover, in a
sense to be explained below, we may assume that these structures vary
holomorphically with s. A convenient way to describe them is as follows:
first, denoting by Aq(C) the COO q-forms on C, the complex structure on
CS is given by the Cauchy-Riemann ( = CR) operator

Secondly, denote by

the decomposition of the tangent bundle of C into (1, 0) and (0, 1)
vectors for the structure d s’ (thus, for f~A0(C) we have that d"sf~
C~(T"*s)). For s close to so the linear projection

will be an isomorphism with dual

Denoting by A0,1(C) the C~(0, 1) forms for the structure corresponding
to so we define
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by

For s close to so the complex structure on CS determines, and is de-

termined by, as. For example, the structure sheaf O(Cs) is given by the
local Coo functions f that satisfy as f = 0.

It is clear that we may write

where a is the CR operator on C and ()s E C~(T’ 0 T"*) is a family of
vector-valued (0, 1) forms on C. Holomorphic dependence of the com-
plex structure on s E S means that the 03B8s depend holomorphically on s
(cf. Kuranishi [ 0]). In any local holomorphic coordinate system on C we
will have

so that, in this coordinate system,

If we denote the Kodaira-Spencer map by

then for e = 03A303BEi~/~si e TJS) we have
i

where s 1, .... Sm are local holomorphic coordinates on S.

REMARK: The point of view of doing local deformation theory by fixing
the Coo manifold X and deforming the almost complex structure by
giving a holomorphically varying decomposition

(holomorphically varying means that TS varies holomorphically with s ) is
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due to Frôhlicher, Nijenhuis, Kodaira, Spencer, Nirenberg, and Kuranishi.
In addition to [10] a good reference is "Deformation of complex struc-
ture, III" by Kodaira, Nirenberg, and Spencer in the 1962 Annals of
Math. There it may be found that the Kodaira-Spencer class is rep-
resented in Dolbeault cohomology by equations (6.9).

Via the differentiable trivialization (6.8) we identify all the cohomol-
ogy groups H1(Cs,C) with H1DR(C, C)=H, and on H we denote by
Q : H 0 H ~ C the pairing given by cup-product. It is well-known that
these identifications are independent of the particular trivialization. The
holomorphically varying subspace

is given by the sections w in C~(T’*s) that satisfy d03C9 = 0. Since

we obtain a holomorphic map

as given in Step 3 in Section 6(a) above (cf. (6.7)). In fact, ~(s) =
H1,0(Cs) ~ G(g, H ) is just a fancy way of giving the classical period
matrix of Ç.

For 03C9, 03C8 ~ HI,o( C), the differential

of the variation of Hodge structure satisfies

where 03C9=03C9(z)dz and 03C8=03C8(z)dz in local coordinates on C. In fact,
(6.10) follows from (6.9) and the fact

that the differential is given by cup-product with the Kodaira-Spencer
class.
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Now suppose that 039B~G(g-l, H1,0(C)) is a linear subspace satisfy-
ing A c ker e, where as above we consider 1 OE Tso(S) as the map

given by 03B4(03BE) = 03C1s0(03BE). By (6.9) this is equivalent to

for f a COO function on C. Of course f is not intrinsic. First, adding any
constant to f leaves ~f unchanged. More seriously, changing the trivializa-
tion (6.8) alters ~03B8s/~03BE by - ~~] where ~ ~ C~(T’) is a C’(1, 0) vector
field on C (cf. [10] and the aforementioned Kodaira-Nirenberg-Spencer
paper). Since

it follows that f is uniquely determined up to a transformation

where c is constant andq E COO(T’). Consequently, we have that:

If D = Li Pi - qi E Div0(C) is any divisor with supp D = Li Pl + qi con-
tained in (w = 0), then for f satisfying (6.11)

is well-defined.

This simple observation will be of importance below.
Now let

be a holomorphically varying divisor, and choose a holomorphically
varying basis 03C91(s),...,03C9g(s) for H1,0(Cs). Then we may express the
normal function P associated to {Ds} by abelian sums:

The motivation for our admittedly complicated construction of 8 v is to
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be able to intrinsically "differentiate" the abelian sum (6.15). Recalling
from Section 6(a) (cf. just below (6.6)) that, for w E ker e the scalar

Q(03B4v/03B403BE, w ) is well-defined, our main result is given by the

THEOREM: With f defined by (6.11), there are tangent vectors p; E Tpl (C),
q’i E Tq, (C) such that 

where pi = pi (0), 03C9|p’lq’l = 03C9(p’i)-03C9(q’i), etc. (13) (6.16)

COROLLARY: Let D = 03A3i - 4j be any divisor linearly equivalent to D =

03A3i pi - qi on C, and suppose that supp D c (w = 0). Then

PROOF: Suppose that D - D = (g) where g is a meromorphic function,
and choose meromorphic functions g, on Cs varying holomorphically
with s and with gso 

= g. (It is not necessary that the polar divisors of gs all
have the same degree as that of f.) Then

is linearly equivalent to D,, and if s=03A3ii(s)-i(s) then by Abel’s
theorem

Applying (6.17) to the Ds gives the corollary. Q.E.D.

PROOF OF (6.16): We may assume that S is the s-disc with so correspond-
ing to s = 0 and 1 OE Ts0(S) to d/ds|s=0. Choose a holomorphic family of
d-closed 1-forms 03C9(s)~ HI,o(Cs) with w(O) = w and set 03B8 = ~03B8s/~03BE. The
assumption w E ker e means that, if we consider the forms 03C9(s) as

equivalence classes

in a fixed vector space, then
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Here, v is the Gauss-Manin connection and the equation ~03C9(s)/ds|s=0
~ H1,0(C) means that the actual derivative d03C9(s)/ds|s=0 satisfies

where g is a Coo function and q is a (1, 0) form on C. (Note that dq = 0
implies that 17 E H1,0(C).) In the notation of Step 3 in Section 6(a) we
have

(here 03C9’03BE is ~~03C9,03BE~). Thus we have

On the other hand the CR equations that define the complex structure
on Ç are (as described above; the following equations define the sheaf
(9 ( Cs ) )

These are equivalent to

where

It follows that ~(s) is a (1, 0) form on Cs. Writing

the linear term in the condition

gives

Since 03C9’03BE is of type (1, 0) on C this means that
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where locally w =,w(z)dz. In summary, after altering g by a constant if
necessary, the expansion (6.19) is

where

To prove (6.17) we will use the Leibnitz formula (6.6). This gives

where v(s)~H is any lifting of v(s)~HzBH/H1,0(Cs). A somewhat
subtle point is that such a lifting is obtained by choosing 1-chains ys on C
with

To convince ourselves of this we write the Jacobian as

where the map Hl ( C, Z) ~ H1,0(Cs)* is given by integrating over 1-cycles.
The linear function corresponding to D, is

and for {~03B1} a completion of {03C903B1(s)} to a basis for H1DR(C)

clearly extends this linear function to all of H. With this lifting of v(s) we
have
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Then, and this is the main step, setting y = yo

by (6.20). Now the expression

is evaluated by the fundamental theorem of calculus, and is 03A3l03C9|p’lq’l where
the p’l, q’i are tangent vectors as described in the statement of the
theorem. Putting everything together and using 03B3df=03A3lf|plql gives the
desired result (6.17). Q.E.D. 

REMARK: Neither term on the right-hand side of (6.17) is intrinsic;
changing the Coo trivialization (6.8) alters each term in a manner dis-
cussed above. The point is that the two alterations cancel so that the sum
is intrinsic (as it must be, since the left-hand side is intrinsic).

(c) In this section we shall use (6.17) to establish a non-degeneracy
property of 8v when ’11: C~S is the local Kuranishi family of curves of
genus g (cf. [10]).(14) For this we will use Corollary (5.8) above, which we
now recall in a convenient form.

Let E = Lara be an effective divisor on the reference curve C = 03C0-1(s0)
(in general, we retain the notations of Section 6(b)). Then (5.8) implies
that:

If 03B8~~2K(E) and 03C9~H0(C, K) satisfies (03C9)  E, then 03B8·03C9=0 in

H1(C, O).(15) (6.23)

It is convenient to prove (6.23) directly here. Thus, let za be a local

holomorphic on C centered at ra, and for any constants 03BB03B1 let pa be a
bump function with Pa(za) = Àa for l z«1 % e/2 and pa(za) = 0 for |z03B1|  E.
Set
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Then the Coo vector-valued (0, 1) form

is a linear combination of the Shiffer variations 0, (cf. Section 5(b)
above). On the other hand, if 03C9(r03B1) = 0 then 

is a Coo function with

It follows that

which is (6.23). Q.E.D.
We now fix a divisor

We consider all normal functions v that arise from families of divisors D,
with Do = D, and we simultaneously consider all classes B E ~2K(E).
Denoting the support of D by 03C3(D) = I:pi + qi, we have the

THEOREM: The condition

for all v and 0 as above is equivalent to

REMARK: Referring to footnote (11), if we take E to be empty (i.e., we so
to speak consider a constant family of curves), then (6.28) reduces to the
condition ( * ) of that footnote.

PROOF: We are considering all families of divisors D, satisfying the initial
condition Do = D. Thus the Ist order behavior of the points pi(s), qi(s)
may be arbitrarily assigned. This means that the tangent vectors p’i, ql in
Theorem (6.16) may be arbitrarily prescribed. Consequently, using (6.17)
the condition
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for all normal functions v arising from arbitrary families D, implies that

In this case, by (6.24)-(6.26)

for all choices of constants 03BB03B1. If E~03C3(D) = ~, then (6.29)’ already
follows from (6.29), and clearly (03C9)03C3(D)+E. If, say r03B1=pi then

(6.29)’ implies that w vanishes to 2nd order at pl. In general, then, we
conclude that

Conversely, if this condition is satisfied, then by (6.17) and (6.24)-(6.26)
we have that Q(03B4v/03B403B8, 03C9) = 0. Q.E.D.

(d) In (5.15) we have seen that a general smooth curve C of genus g &#x3E; 5

may be reconstructed from its universal infinitesimal variation of Hodge
structure. On the other hand, when g  3 the universal infinitesimal

variation of Hodge structure contains no information beyond that of the
Hodge structure, since in this case the differential of the period map is in
general an isomorphism from H1(C, 8) to the tangent space to Siegel
space. This leaves the case g = 4, which we now discuss.
We shall assume that C is non-hyperelliptic and shall identify C with

its canonical model in PH1(C, O) ~ P3. It is well-known that (cf. Section
2 of [1])

is the intersection of a quadric Q and cubic V, and that for general C the
quadric Q is smooth. In this case the two rulings of Q cut out two g3’s,
say ID’l and |D-|, on C. These are the only g13’s (loc. cit.) and so their
difference D+ - D- E Div°(C) gives a point

where u : Div°(C) - J(C) is the Abel-Jacobi mapping. Clearly, v(C) is
well-defined up to ± and vanishes exactly when |D+| = |D-|; i.e., when
Q is singular. In summary:

Over any family of non-hyperelliptic genus four curves there is a normal

function, defined up to ± 1, constructed from by the difference of the two
g13’s. (6.31)
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It is clear that 03B4(-v) = - 8 v, and we shall show that

For C a general genus four curve with local Kuranishi space C ~ S and
normal function (6.31), we may reconstruct C from the infinitesimal in-
variant 03B4v. (6.32)

We identify Tso(S) with H1(C, 8) and recall from (5.7) (applied to the
case X = C and L = K) that the rank one transformations in the image of

may be identified with the quadric Q. More precisely, choosing a basis wa
for HO(C, K ) with corresponding dual basis for H1(C, e), the rank one
transformations in

are the image of the Veronese mapping

given by

Projectively, (6.33) induces

given in homogeneous coordinates by

In particular, Q c p3 is v-1(H) for some hyperplane H c p9, and (5.7)
gives that

For each point p E Q we denote by 0. a non-zero element in I-I’(C, 0398)
such that icO. = v(p); i.e.,
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is a rank one transformation corresponding to p E Q. Then

P(ker 03B8p) = (hyperplanes in I? 3 passing through p}.
In particular, when p~ C = Q r1 V then 03B8p is the Shiffer variation corre-
sponding to p and ker 03B8p = H0 (C, K(-p)). In general, we denote by
p * ~ C3 the linear functions 03A303B103BB03B1x03B1 that vanish at p e p 3 so that

With the varieties 7r : 03A31~S and cj : 1~S being defined as in

Section 6(a) (cf. (6.4)), we have for the fibres over so that -1(s0) = Q
and, setting £ = 03C0-1 (s0),

is given by

Thus,

is a P2-bundle. The bundle O(1) ~ 03A3 (cf. Section 6(a)) is 03C0*1(OQ(2)),
because O(1) is induced from OPH1(C,0398)(1) and the Veronese map satisfies

The bundle L~03A3 is 03C0*2(OP3*(1)).
In particular, we consider the subvariety

defined by

Then X = Q, and over X we have

By restricting the infinitesimal invariant Q(03B4v, 03C9) to X we obtain a
section
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To establish (6.32) we shall show that:

For C a general curve of genus four, the section (6.34) vanishes exactly on
C = Q n V. (6.35)

PROOF oF (6.35): We first show that Q(03B4v,03C9) vanishes on C. For p E Q
the intersection Tp(Q)~Q consists of lines of the two rulings and we
have a picture like

where

By Corollary (6.18) we have

where

When p E C the above picture becomes

and Op is a Shiffer variation associated to p. Using the notations

(6.24)-(6.26) when E = p, we let z be a local holomorphic coordinate
centered at p and p a bump function with 03C1(z)=1 for |z|03B5 and
p(z) = 0 for |z|  2E. Then
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where

It follows that f(q2)=f(q3)=f(r2)=f(r3)=0 and f(q1)=f(r1), so that
by (6.36)

It remains to show that, for C a general curve, (6.34) does not vanish
identically. For this we consider curves C = Q~V having a triple branch
point for one of the g13’s. These form a codimension-one family F, and
within F a codimension-one subfamily is given by those curves for which
the other g13 has a simple branch point on the line passing through the
triple branch point:

If 03C9~H0(C, K(-3p)) defines the tangent plane to Q at p, then for
0 = Bp the function f in (6.26) vanishes to second order at p and to first
order at p’. Thus, when 0 moves infinitesimally along the flex-tangent line
L (i.e., we consider °2p)’ then f(ql)=0=f(r1) but f(p’)~0. Conse-
quently, for this curve the section (6.34) does not vanish identically.
Q.E.D.

(e) In this section we will extend the basic formula (6.17) to families of
intermediate Jacobians.

Let {Xs}s~S be a family of smooth projective varieties of dimension
n = 2m + 1. Since we are working locally around a reference point so E S,
we set X = Xso and differentiabily trivialize our family. Thus, we may
think of {Xs}s~S as given by a family of complex structures

on the fixed C°° manifold X. As in Section 6(b) we use the isomorphisms

to describe d s’ by
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Then as in the curve case

where à is the complex structure on X and 0(s) is a holomorphic family
of vector-valued (0, 1) forms on X, written locally as

It is well-known (cf. [10]) that the integrability condition

is satisfied, so that for 03BE = 03A303BE03B1~/~s03B1 E Tso(S) the vector-valued (0, 1) form

satisfies

Thus ~03B8(s)/~03BE~ H0,1~(X, 0398) ~ H1(X, 0398), and in fact the map

is just the Kodaira-Spencer map

We now let

be the global C~(p, q ) forms on Xs and set

Suppose that 03C9(s) ~ Ap,q(Xs) is a holomorphic family of ( p, q ) forms on
Xs and set
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For use below we have the relation

where,w = 03C9(0).

PROOF OF (6.38): The (1, 0) forms on Xs are locally spanned by

Using standard multi-index notation we write

Then, since 0(s) depends holomorphically on s,

and we obtain that

where fIJ(z) = fIJ(0, z) and dzJ = ~J(0). This gives

where 0 k L = a ~03B8lk(s, z) ~s03B1 |s=0 from which we immediately obtain (6.38).
Now suppose that Zs c XS is a codimension ( m + 1) algebraic cycle

that is homologous to zero, and define a normal function by

where J(Xs)=H2m+1(X, Z)BH2m+1(Xs, C)/Fm+1H2m+1(Xs, C) is the
m th intermediate Jacobian of Xs and

is the Abel-Jacobi map.
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Writing Z, = ZS - ZS where Z±s are effective cycles, we set

We shall give a formula for 8 v over LI = 03A3, recalling that £ = U sEsLs
where

is defined by

(recall that 03C1s(03BE)~PH1(Xs, 0398) and 03C1s(03BE)·03C9 is the cup-product
H1(Xs, 03B8)~Hm+1,m(Xs)~Hm,m+1(Xs)). If v(s)~H2m+1(Xs, C) ~
H2m+1DR(X, C) is any lifting of v(s), then by definition

where 03C9~Hm,m+1(Xs) is the annihilator of 03C9 under the pairing
6 : Hm+ 1,m(Xs) ~ Hm,m+ 1(Xs) ~ C given by a polarization on XS. Giv-
ing 8 v is equivalent to knowing the quantities Q(03B4v, 03C9)(03BE) = Q(03B4v/03B403BE, 03C9)
(the latter expression is notation), and from the Leibnitz formula (6.6) we
have

where 03C9’03BE=~03BE03C9~Hm+1,m(X) (here we are evaluating everything at

s = 0).
We now imagine Zs as a family of cycles on the fixed C°° manifold X

(they are not complex-analytic cycles, but only currents of a suitable
sort). Write

where fs is a chain, and let 03C9(s)~Am+1,m(Xs) be closed forms giving
classes in Hm+1,m(Xs) that reduce to 03C9 at s = 0. Then, as in the curve
case we may consider fs as a lifting of v(s)~(Fm+1H2m+1(Xs, C))*/
H2m+1(Xs,Z), and

(the extent to which things are independent of choices will be discussed
below). If q is the normal vector to Z = Zo that gives the tangent to the
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family of cycles Zs, then by differentiation at s = 0 we have

where r = ro and i(~)03C9 is the contraction of w byq (cf. the remark at the
end of this section). Now by (6.38)

where 03C8~Fm+1A2m+1(X). On the other hand by definition of the

Gauss-Manin connection

Since ~03BE03C9~Fm+1H2m+1(X) and d03C9/d03BE~FmH2m+1(X) we may as-
sume (since X is Kähler and therefore the Hodge-deRham spectral

1 

sequence degenerates at E1 ) that

Letting =03B61 + 03B6 where el E Fm+ IA2m( X) and e E Am,m(X), it follows
from (6.42) and (6.43) that

From (6.40), (6.41), and (6.43) we obtain our desired formula:

REMARK: In contrast to the curve case it is not trivial to verify that (6.45)
is independent of choices, so we shall do this in some detail.

First, if we replaçe f by f + a where (6.44) is still satisfied, then
a E Am,m(X) and 3o = 0. Since

and X is Kähler, it again follows from the degeneration of the Hodge-de-
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Rham spectral sequence that

where y E Fm+1A2m(X). Thus

by type considerations.
Next, 03C9(s) is only an équivalence class in

Fm+1Z2m+1(Xs)/dFm+1A2m(Xs) ~Fm+1A2m+1(Xs) (here, "Z" denotes
d-closed forms). Replacing 03C9(s) by 03C9(s)+d~(s) where ~(s) ~
Fm+1A2m(Xs) and using the H. Cartan formula for Lie derivatives

(here qp = cp (0)) we obtain

since Zd(i(~)~) = 0 and by the definition of the variation vector ~

=0

by type considerations.
Similarly, we may check that (6.45) is independent of all other choices.
Using (6.45) we will give sufficient conditions that Q(03B4v/03B403BE, 03C9) = 0.
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For this we suppose first that

where I,(,) is the ideal sheaf of the support a(Z) of Z. Then clearly

Next, in the cohomology sequence

of

for B E H1(X, 0398) and w satisfying (6.46) the cup-product

If 0 = 03C1(03BE), then the assumption 03C1(03BE)·03C9 = 0 in Hm,m+1(X) means that
j(03B8. 03C9) = 0 in (6.47). Consequently, there is a well-defined class

which maps to B - w in (6.47). We then have the

PROPOSITION: If the conditions (6.46) and [(J . 03C9 ] = 0 in (6.48) are satisfied,
then

PROOF: By (6.45) and (6.46)

where ~03B6 = 0 . w. The condition [0 . w ] = 0 implies that we may choose 03B6
satisfying ~03B6 = 03B8·03C9 and 03B6|03C3(z) = 0. Q.E.D.
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EXAMPLE/PROBLEM: We consider the family Xs~P4 of smooth quintic
threefolds (the intermediate Jacobians of smooth hypersurfaces Y~P4
of degrees 3 and 4 are, in some sense, understood). On a general member,
say X, there are a finite number of lines A, c X (according to Loring Tu,
this number is 2875). Each difference Ai, = Ai - Ai is a primitive alge-
braic 1-cycle, and we set

It is a result of A. Collino that

For X general, we have for all i j

This suggests that we refine the Hodge structure of X to consist of the
data (J(X), ii,). Moreover, we may also speak about the 1 st order
infinitesimal variation of this data. With (6.32) in mind we pose the

PROBLEM: Can we reconstruct a general quintic X c P 4 from the infinitesi-
mal invariants 8Vij? (6.51)

REMARK: The notation in (6.41) needs amplification. On X X S we let

Thinking of S as a disk in C, let y c S be an arc from so = 0 to Os and set

where 03C0: X X S - S is the projection
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Then

and the right-hand side of (6.41) is

This is the right-hand side of (6.41).

(f) In the following highly speculative discussion we will take up the
possibility of using 8 v to give some of the "equations" of algebraic cycles
on a smooth projective variety in terms of their fundamental classes.

The idea is this: first, by the Lefschetz theorems it will suffice (over Q)
to consider the case of a primitive codimension-m algebraic cycle Z on a
smooth projective variety Y c P r where dim Y = 2 m (here, primitive
refers to the hyperplane class on Y). Let z E Hm,mprim(Y)~H2m(Y, Z) be
the fundamental class of Z. For d a fixed large integer we consider the
linear system 16y(d)1 of degree d hypersurface sections of Y, and we let
S’~|OY(d)| be the dense open set of smooth X~|OY(d)|. Over S we
construct the fibre space

with 03C0-1(s) being the m t h intermediate Jacobian J(Xs) where Xs ~| 16 y (d)l
corresponds to SES. Then

is a codimension-m cycle that is homologous to zero (since Z is primitive),
and so we may define a normal function by
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where

is the Abel-Jacobi map. As proved in [15] (cf. also [7] and (1.b.13) in
Section 1), the variable (or essential) part of v depends only on z;

conversely, given a Hodge class z E Hm,mprim(Y) n H2m(Y,Z) we may con-
struct the normal function v whose fundamental class is z. In other

words, associated to the Hodge class z there is a global complex-analytic
obj ect v E H0(S, gh), and we would like to use 8 v to single out algebraic
cycles on Y. We shall first explain how this might go for curves on a
surface (the case m = 1); this explanation is based on the formula (6.17)
in Section 6(b).
We shall write F, C, D in place of Y, X, Z; thus C~|OF(d)| is a

general hypersurface section and D c F is an algebraic 1-cycle that is

homologous to zero. We denote by 03C3(D) the support of D. The Poincaré
residue sequence is

and the image of R is the variable part of H1,0( C) c H1R( C). If

D· C = 03A3pi - qt, then the normal function is expressed by abelian sums

Intuitively, we would like to say that the condition

may be detected by differentiating (6.53), much in the spirit of how the
Brill-Noether matrix is used to study special divisors on a fixed curve (cf.
[1]).

Choosing d sufficiently large and writing KF = 03A92F, Kc = 03A91C, we will
have an exact sequence (obtained from the cohomology sequence of
(6.52)~KF(d))

Therefore the mapping
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restricts to C to induce the bicanonical mapping

Since N = OC(d) is the normal bundle to C in F there is a diagram

If C ~|OF(d)| corresponds to s E S ( = locus of smooth curves in |OF(d)|)
then we may identify Ts(S) with H0(F, OF(d))/H0(F, (9F) and a in
(6.54) becomes the Kodaira-Spencer mapping

We define

by

According to Theorem 5.2 in Section 5 above, (03C9, 8, C) E ’¥ consists of a
smooth curve C E |OF(d)| together with 03C9 E H0(KF(d)) and an infinites-
imal variation of C on F whose Kodaira-Spencer dass 03B8 satisfies
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We may consider the infinitesimal invariant

on 03A8. Denoting by 03C003B1 (a = 1, 2, 3) the respective projections in (6.55),

(the 03C0*3O(1)-factor comes because multiplying the section s E

H0(F, OF(d)) which defines C by a scalar À multiplies the Poincaré
residue by 03BB-1). We denote by

the subvariety where the section (6.56) vanishes. We note that 03A8 and 03A8v
are defined purely in terms of F, |OF(d)|, and the fundamental class

Y E H1,1prim(F) n H2(F, ll) of D.
We now define

by

Then by Theorem 6.16 (cf. the discussion in Section 6(c)) we have the
inclusion

In general we do not expect equality here. However, suppose we define

and

by

and
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then (6.56) gives the inclusion

We still do not expect equality. If

where D’, D" are effective and vary in respective linear systems IDÀI,
|D"03BC|, then we set

From (6.57) we have

At this juncture, based on the examples in Section 4 we may at least in
some cases expect equality to hold. If so, then under the projection

on the second factor, we will have in a purely Hodge-theoretic manner
determined the image

and finally from this image we may determine primitive algebraic cyles
with the given fundamental class.

More precisely, let

be the image of U 03BB,03BCH0(F, (KF(d))2(-D’03BB- D"03BC)). Since d is assumed
sufficiently large (estimating a priori how large d should be is, of course,
one of the main difficulties), we may assume that each D’03BB is the base
curve of the linear system

(ID’03BB is the ideal sheaf of D’03BB). In other words, if the equality
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holds (this is a big if), then on the one hand we will have determined A
by a purely Hodge-theoretic construction, while on the other hand A is a
bi-ruled subvariety of PH0(F, (Kp(d))2)* from which we may construct
cycles as follows: To say that A is bi-ruled means that it is the image of a
rational map

that is linear in each variable separately. Each image Pr {pt},{pt} Ps
then gives a linear subsystem of PH0(F, (KF(d))2)*, and the base locus
( = fixed component in this case) of these linear subsystems are the curves
D’03BB, D"03BC. Assuming not only that 03C0(Iv)=039B but that A is uniquely
bi-ruled, we will in this way have constructed cycles from 8 v.

To show that these considerations are not completely farfetched we
shall conclude this discussion with the

EXAMPLE: Let F~P3 be a smooth quadric surface with lines L1, L2
,chosen from the two rulings. If 03BBi~H1,1(F)~H2(F, Z) is the funda-
mental class of jL,, then

is a primitive Hodge class (in some sense this is the simplest example of
such). We let S c |OF(3)| be the open set of smooth intersections

where G is a cubic surface in P3. Then C is a general canonical curve of
genus four, and the normal function

(g = ~s~SJ(Cs)) corresponding to À has been discussed, from a com-
pletely different viewpoint, in Section 6(d) above. Here we are adopting
the viewpoint that we known the surface F, the curves (6.60), and the
normal function (6.61), but we do not know the lines L1, L2 on F (the
previous point of view was essentially that we knew F, v, and the lines on
F and wished to generically determine C). We shall show how to
determine them from the infinitesimal invariant 8 v. Thus, at least in this
very simple case we are able to give the "equations" of the 1-cycles
L1-L2 by a purely Hodge-theoretic construction, one that at least

formally generalizes to higher dimensions.
Given CE |OF(3)| we shall use the Shiffer variations Op E H1(C, 0398).

Since C is general, these Shiffer variations are Kodaira-Spencer images of
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infinitesimal variations of C in 1 (9 F (3)1. Recall from Section 5(d) that the
kernel of

is given by

All the spaces H0(C, K ) are isomorphic (via Poincaré residues) to

H°(F, (9F(I));: HO(P3, OP3(1)). For w E HO(C, K) we denote by P; the
corresponding hyperplane. We now consider triples ( p, C, cj) where C is
a curve (6.60) and the conditions

are satisfied. The possible configurations are
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Here FCA) = F ~ P203C9 and in case (i) this is a smooth plane conic, while in
cases (ii) and (iii) it is singular; i.e., P203C9 = Tq(F) is the tangent plane to F
at some point q. The remaining points of P203C9 n C = (03C9) are denoted by
X ’s; in case (ii) it is possible that q is one of the X ’s.
We now consider p, w as fixed and G as variable (subject to p E G).

We then set

where 03B8p ~ H1(F~G, 0398) is a Shiffer variation.

PROPOSITION : In cases ( i ), (ii) we have Q(03B4v, 03C9)(G) ~ 0 for a general G,
while in case (iii) Q(03B4v, 03C9)(G) = 0. (6.62)

COROLLARY: The condition Q(03B4v, 03C9)(G)=0 for a general G is equivalent
to P203C9=Tp(F). (6.63)

Using the corollary we may detect, by purely Hodge-theoretic methods,
the equations of algebraic 1-cycles with fundamental class À. Namely, the
bi-ruled variety A alluded to above is in this case the subvariety of P3*
consisting of 1?2,s passing through one of the lines on Q (of course,
A = Q* turns out to be the dual surface to Q).

PROOF OF (6.62): In case (ii), by (6.18) we have (cf. the arguments in
Section 6(d))

where f=~03C9 as in (6.26) with ~ = (03C1(z)/z)~/~z as j ust above (6.37) and
a = 03C9(z)dz near p.

In case (iii),
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Finally, in case (i) we can use an argument similar to that at the end of
the proof of (6.35) to show that Q(03B4v, 03C9)(03B8p) ~ 0 when G is general.

To conclude this paper we shall give a variant of this construction,
based on (6.49), for higher codimensional cycles.
We first review the construction in Section 3(a) (cf. Theorem (3.a.7)).

Let OY(1) - Y2m be a sufficiently ample line bundle and X2m-1 ~ |OY(1)|
a smooth divisor. Then there is an associated infinitesimal variation of

Hodge structure {Hz, HP,q, Q, T, 03B4} where {Hz, Hp’ q, Q} is the variable
part of H2m-1(X) and where

with 8 being determined by the map p in

(here r is restriction and A is the coboundary in the exact cohomology
sequence of 0~0398X~0398Y|X~OX(1)~0). By residues (loc. cit.) we
have

where U(p, X)~H0(KY(p+ 1)) is a subspace depending on X (it is

some sort of generalized "Jacobian ideal"). By replacing OY(1) by a
power if necessary, we may assume that the induced embedding Y c P N
is projectively normal and that the Arbarello-Sernesi module (cf. E.

Arbarello and E. Sernesi, Petri’s approach to the study of the ideal
associated to a special divisor, Invent. Math. 49 (1978), 99-119)

is generated as an R = ~l0H0(OY(l))-module in its lowest degree. By
(6.64)

is a quotient vector space of M. We observe that:

The axioms of an infinitesimal variation of Hodge structure imply that Mx
is a quotient R-module of M, where the pairing
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is generated by

Again we see the commutative algebra flavor of an infinitesimal

variation of Hodge structure (cf. Donagi’s proof of generic Torelli for
most hypersurfaces to appear in this journal).

For w E H0(KY(1)) with divisor D = (03C9) and P E H0(OY(m)) we may
consider the residue

Assuming that P03C9|X = 0, the exact sequence (6.47) with D replacing 03C3(Z)
and m - 1 replacing m gives

defined exactly as was [03B8·03C9]~Hm-1(03A9m-1X~O03C3(z))/Hm-1(03A9m-1X) in
(6.48). We define

by

Note that this construction is purely Hodge-theoretic.
We now consider a primitive codimension-m cycle Z c Y and set

ZX = Z·X (by the moving lemma applied to Z, we may assume that this
intersection is defined). There is the usual normal function v given by

where uX is the Abel-Jacobi mapping for codimension-m cycles on X. As
noted above, v is given by purely Hodge-theoretic data.

The main observation is that the infinitesimal invariant 03B4v may be
defined on S. For example, suppose that P=03BE1...03BEm where ei E
H0(OY(1)). Then

and
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Hence 03B4v(03C8, 03BEm) is defined and is equal to 03B4v(03C8, 03BEl) for any other 1, . We
denote it by 03B4v(03C9, P, X) ; then

where ir, (i = 1, 2, 3) are the projections of E in (6.67). We set

Clearly, this subvariety of [KY(1)| is defined purely Hodge-theoretically
once we have been given the Hodge class z.
On the other hand, we denote by 10(2) the ideal sheaf of the support of

Z and set

From (6.49) we have the

PROPOSITION: For any primitive algebraic cycle Z with fundamental class z,
we have

PROOF: If o(Z) ç D then from the commutative diagram

we see that {P· 03C9}X = 0 =* [ResX(P· w)J = 0. Now apply (6.49). Q.E.D.
In this construction the choices (i) of a particular cycle Z whose

fundamental class cl(Z) is equal to the Hodge class z and (ii) of

sufficiently ample line bundle OY(1), are both rather arbitrary. Replacing
OY(1) by OY(k) we infer from (6.69) the inclusion

Note that the left-hand side of (6.70)k is ruled by linear subspaces of
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|KY(k)| whose base loci are the supports 03C3(Z) of the cycles Z with
cl(Z) = z. An obvious question is whether or not, for sufficiently large k,
we have equality at least of the highest dimensional components on the
two sides of (6.70)k. If so this would give a method for digging the
equations of a cycle out of its fundamental class.
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Notes

(1) Intuitively, 8 satisfies the conditions of the differential of a variation of Hodge
structure. Speaking precisely, on the classifying space for polarized Hodge structures there
is a differential system I given by the infinitesimal period reation, and (in case 8 is injective)
Y is given by an integral element of I.

(2) The dual of K is ordinary multiplication of sections

so it is reasonable to hope for a good interpretation of the ’E:.k,l ’s.

(3) The trouble is that, for reasons having to do with the variational theory of special
divisors on curves, the mapping a" is almost never surjective when n  2. These matters are
discussed in our first paper.
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(4) At latest count there are six different proofs of the weak global Torelli for curves of
genus g  4; of these, three use the e-divisor, one uses degeneration and induction on g
(these proofs all work for any g), and two use infinitesimal variations of Hodge structure.

At present the best methods for proving Torelli-type results in higher dimensions seem
to either be using infinitesimal variations of Hodge structure (cf. [2], and the paper by Ron
Donagi which appears in this issue, Section 4 above), or to prove the result for special
varieties and then establish a properness statement (cf. [4], [5], and [11]). Of course, the
underlying problem is to effectively relate the Hodge theory and geometry of a higher
dimensional variety in the absence of a 0-divisor.

(5) A normal function is a cross-section v(s)~Js associated to a family {Js}s~S of
intermediate Jacobians, where v is required to satisfy a quasi-horizontally condition D v = 0
(cf. Section 1(c)) and, in case S is a quasi-projective variety, a growth condition (cf. [3]).
Normal functions typically arise by taking the Abel-Jacobi images of a family of algebraic
cycles Zs C Xs where XS is smooth projective and Zs~Zh(Xs) is homologous to zero.
General references are [7], [15], and a forthcoming paper by J. King.

(6) Of course, we may interpret d us as the differential of a map between two manifolds,
but this seems of little value. What seems necessary is some sort of homogeneity of the
image manifold. Although this is not present in the situation at hand, the theory of exterior
differential systems suggests a surrogate, and this is what motivated our construction of 8 v.

(7) The curve will be realized as the locus where a suitable expression Q(03B4v/03B403BE,03C9) = 0
(this expression, which has a purely Hodge-theoretic construction, is a section of a line
bundle), and since 03B4(-v) = - 03B4(v) the sign ambiguity disappears.

(8) The point is that the proofs of the Lefschetz (1, 1) theorem either use the 0-divisor
associated to polarized Hodge structures of weight one (cf. [12] and, for a more recent
exposition, [7]) or the exponential sheaf sequence ([9]); both of these methods encounter
serious difficulties in codimension  2, so it may be of interest to give a construction of
algebraic cycles in a case covered by the Lefschetz (1, 1) theorem but by a method that at
least makes sense in general.

(9) The first mapping is given by polarization of the homogeneous polynomial mapping
given in Dolbeault cohomology by

where 0 = 03A303B8i j ~ ~zi ~ d iJ OE H0,1~(X, e) (cf. Section 2 for further discussion).

(10) We would like to thank Joe Harris for substantial help in the proof of this result.

(11) As a dimension check, suppose that C is a smooth curve of genus g &#x3E; 2. If

D = p j + ... + P2g-2 ~ |K| is the divisor of (W E H0(C, K ), and if Ç OE H0(C, K2) vanishes
on p1,...,i,.··,p2g-2, then from

it follows that 03C8(pl) = 0. Alternatively, the exact cohomology sequence of
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also gives 03C8(pl) = 0. In either case it follows that

which implies that

which is the dimension of a hypersurface in PH1(C, 0398) ~ p3g-4.

(12) In this connection suppose that Vis a trivial variation of Hodge structure; i.e., we
have a fixed Hodge structure

with polarizing form Q. Letting

be the corresponding intermediate Jacobian, a normal function is given by a holomorphic
mapping

For all 1 the varieties m,l = PT, and the infinitesimal invariant 8 v may be identified with
the usual differential

(13) Referring to footnote (12), suppose that C - S is holomorphically a product C x S,
so that Ds E Div°(C) is a holomorphic family of divisors on a fixed curve. Then we may
take f = 0 in (6.11) and

Put differently, in this case the infinitesimal invariant 8 v essentially reduces to the
Brill-Noether matrix that plays the fundamental role in the theory of special divisors on a
fixed curve (cf. [1]). In particular, the condition

for all families (DJ c Div0(C) with Do = D = 03A3pi - qi is equivalent to

where 03C3(D)=03A3pi + q; is the support of D. This result will be generalized in Theorem (6.28)
below.
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(14) Actually, all we will really use is that

is surjective (for the Kuranishi family it is an isomorphism). In particular every point
0 ~ PH1(C, 8) should be 03C1s0(03BE) for some Ï ~ PTs0(S).

In our case where é - S is the Kuranishi family we shall identify Tso(S) with Hl (C, 0398),
so that for 0 E H’(C, e) and w E ker{03B8: H1,0 ~ H0,1} the infinitesimal invariant

is a well-defined complex number (for a given normal function v).

(15) Here, we recall our notational convention that T2K(E) is the linear span of the
points ~2K(r03B1)~PH1(C, 0398). Also, 0 will denote both a point in PH1(C, 0398) and a
non-zero vector in H1(C, 8); since we deal only with ranks of homogeneous equations this
will cause no ambiguity.
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