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Introduction

The Torelli problem for a given family of varieties asks whether the
period map is injective on that family, i.e., whether varieties of the family
can be distinguished by means of their Hodge structures. The answer is
affirmative for curves [1], abelian varieties, K3 surfaces [14] and cubic
threefolds [6], and negative for several families of surfaces of general type
[3,15].

In recent years, several variants have been studied, inquiring whether
the period map is an immersion [13], whether its differential is injective
on the deformation space [7], and whether the map is generically injective
[4]. The corresponding problems are referred to as local, infinitesimal and
generic Torelli, in comparison with the original "global" Torelli.

Our purpose in this work is to prove:
Generic Torelli for hypersurfaces. The period map for non-singular hyper-
surfaces of degree d in Pn+1 is generically injective, except possibly for
the following cases:

(0) n = 2, d = 3 (cubic surfaces).

(1) d divides n + 2.

(2) d=4, n=4m or d=6, n=6m+1 (m1).

The result is false in case (0) and unknown in (1), (2). We prove the

* Supported in part by NSF Grant MCS81-08814.
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theorem in Section 6, where we also give some heuristic explanations as
to why our proof should fail in the main exception, (1).

The proof is based on Griffiths’ theory of infinitesimal variations of
Hodge structures as developed in [4], [5], [8] and [10]. In a nutshell, the
idea is this: let

be a map of manifolds or varieties, defined almost everywhere. Let d be
the rank of p at a generic point of M. The prolongation of p is the

(almost everywhere defined) map

where TD . is the tangent bundle of D, G ( d, TD) is the Grassmannian
bundle over D of d-dimensional subspaces of TD, and v is defined by

The Principle of Prolongation is the obvious remark that p is generically
injective if v is. Our plan is to apply this principle to the period map p.
Its prolongation v is the "infinitesimal variation of Hodge structure".

The reason that we are able to recover a variety X from v(X) but not
directly from p(X) is that v ( X) has in it more algebraic structure. The
Hodge structure p(X) consists of two types of data: an algebraic part
giving a filtered vector space and a bilinear form satisfying various
conditions, and a transcendental part giving a lattice in the vector space.
Each part separately has no invariants: the invariants of a Hodge
structure come from comparing the two parts. Thus the theory of Hodge
structures is transcendental at heart.

While the infinitesimal variation v(X) does not necessarily have more
information in it than does p(X) - the Torelli problem implies that it
does not - it certainly does contain more algebraic structure. Thus the
point of Griffiths’ theory, and of our proof, becomes: try to handle the
algebraic part of v(X) efficiently. In the case of generic hypersurfaces we
are able to show that this algebraic piece alone, without the lattice,
determines the hypersurface.

The first three sections of this paper review the necessary background.
The main body of the work shows that v(X) determines the Jacobian
ideal J(X) of X. Thus we start in Section 1 by proving a variant of a
well-known lemma, showing that J(X) determines X up to projective
automorphism.

Griffiths’ method of converting the periods of a hypersurface into
vector spaces of polynomials [7] is reviewed in Section 2. This is a basic
tool, allowing us to translate the geometric question of injectivity into an
algebraic question of recovering a ring from some partial data.
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In Section 3 we review the only previously known generic Torelli result
for hypersurfaces, that of [4] (for cubic hypersurfaces of dimension 3 m ).
Analysis of their method shows that they produce a vector space of
polynomials and the Jacobian ideal in it, but the isomorphism of this
vector space with the space of polynomials is not known except under
some very special circumstances.

Thus in the remaining sections we concern ourselves with the problem
of recovering the polynomial structure of a vector space from various
non-linear bits of data. In Section 4, and again in Section 5, we are able
to extend the Carlson-Griffiths method to numerous new cases. We show
that in these cases the polynomial structure on our vector space W is
determined by a certain family of quadrics on W*, and that this family is
determined by v(X): in fact, v(X) determines a bilinear map IL from
W X W to another vector space (determined by v ( X)), and our family
consists of all quadrics of rank 4 on W* whose image under IL is zero.

In Section 6 we adopt a somewhat different method. We consider only
the map

i.e. the variation of the first piece of the Hodge structure. This ignores the
lattice, the higher Hodge pieces, and the polarization. We associate to
any bilinear map a new bilinear map which we call its symmetrizer.
Iterative application to the map B above yields lower and lower pieces of
the Jacobian ring R, allowing us eventually to recapture the polynomial
structure, or rather to reduce its recapture to the special cases obtained in
Sections 4 and 5 (Lemma 4.2, and the more complicated Proposition
5.3.).
We hope that the new techniques of Sections 4 and 5 and especially

Section 6 should find their use in settling Torelli and related problems in
cases other than hypersurfaces. Let us mention without proof that the
arguments included here, with no alteration, suffice to prove generic
Torelli for double covers of Pn, and are quite likely to go over without
major change to hypersurfaces in weighted projective spaces.
We assume throughout that the ground field is C. Notice however that

everything in Sections 3-6 is algebraic in nature and holds over any field
with slight restrictions on the characteristic, i.e. the Jacobian ideal can

always be recovered from the algebraic part of the infinitesimal variation
of Hodge structure. The Jacobian ideal does not determine X in general
(the proof in Section 1 is analytic), but we conjecture that it does if the
characteristic does not divide the degree. Unfortunately, there seems to
be no way of formulating the Torelli question itself other than over C.

The indebtedness of this work to Griffiths’ theories of the period map
[7] and its infinitesimal variation [5] should be clear to any reader. 1

would like to thank Jim Carlson, Herb Clemens, Mark Green, Phil
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Griffiths, and Loring Tu for stimulating conversations and encourage-
ment. Special thanks go to Steve Zucker who helped me simplify consid-
erably the proof of the crucial Proposition 6.2.

§1. Recovery of a f unction f rom its Jacobian ideal

Throughout this work denotes the ( n + 2)-dimensional complex vector
space

PROPOSITION 1.1: If f, g E SdV have the same Jacobian ideal then they are
related by an invertible projective transformation.

REMARK: In [4] a similar result is proven: One of the polynomials, say f,
is required to be generic, and then the assertion is stronger: f and g must
be proportional. The example of the Fermat hypersurfaces:

shows that, in a sense, both our result and that of [4] are best possible. A
third proof, in [5], is more algebraic than ours: The authors require that
no projective automorphism leave f invariant, and conclude that f and g
(with the same Jacobian ideal) are projectively equivalent. The "analytic"
lemma of Mather (below) is replaced by the existence of the moduli space
of non-singular projective hypersurfaces of given degree and dimension.

PROOF oF 1.1: We adapt, and simplify, the argument from [12]. Start
with:

LEMMA 1.2: Let G be a Lie group acting on a manifold X, and let U c X be
a connected, locally closed submanifold satisfying:

(a) For each x E U,

where Gx is the orbit of G through x.
(b) dim Tx ( Gx ) is independent of x E U.

Then U is contained in an orbit of G.

(Proof: [11], lemma 3.1.)
In our application, X = SdV and G = GL(V*). For f E X, we claim

that Tf(Gf), as a subspace of X, is (Y(f))d, the d t h piece of the Jacobian
ideal of f, spanned by the functions



329

where the xt range over a basis of V. Indeed, G is generated by the
1-parameter subgroups

where (ei) is the dual basis to {xJ}. This group acts on V* by sending e,,
to eJ + tel, and fixing the other ek, k =1= j. The Taylor expansion:

shows that the tangent vector to Gf at f along the subgroup g’j is precisely
xj~f/~xi, proving that Tf(Gf)=(J(f))d.

Assume now that

and let U = {ft}t~C where h = tf + (1 - t ) g. Condition (a) of the lemma
clearly holds for all hEU, since f, g~J(f)d = J(g)d. Since:

we know, by semicontinuity, that there is a Zariski open subset U c U
such that f, g E U and such that for Ir E U,

so that condition (b) also holds, and we conclude that f, g represent
projectively equivalent hypersurfaces. Q.E.D.

REMARK: As stated, the result is false in characteristic p =1= 0, since f and g
may differ by a pth power, all of whose partials vanish. The best possible
conjecture would be: if f, g have the same Jacobian ideal, then there is an
automorphism T of V such that all the partials of Tf - g vanish. (I.e.
Tf - g would be a combination of pth power monomials.)

§2. Hodge structures, residues and Jacobian rings

In this section we review some results, due mostly to Griffiths [7],
concerning the explicit description of the Hodge structure of a non-singu-
lar hypersurface X c Pn+1. We use the following notation: for a nonsin-
gular hypersurface
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We set:

S = S* V: the homogeneous function ring of P " ’ 1.

J c S : the homogeneous ideal generated by the partials of f.

R = S/J: We call this the Jacobian ring of f.

sa, Ja, Ra : homogeneous pieces of degree a in S, J, R respectively.

We are interested in the Hodge groups Hi,n-i of X, in the middle
(= only interesting) dimension. More precisely, consider the Hodge
filtration of the primitive cohomology:

defined by

These subspaces vary holomorphically with X, and we ask for the

successive quotients Fa/Fa+1. The basic result is:

THEOREM 2.1: There are natural isomorphisms, depending holomorphically
on f:

where

ta=(n-a+1)d-(n+2)

d=deg(X), n=dim(X).

The proof is in [7] and we only sketch it here. The residue map

Res: Hn+1(Pn+1BX) ~ Hn(X)
is defined as the adjoint of the tube map

sending an n-cycle in X to the boundary of a normal disc tube around it
in Pn+1BX. The image of Res is Hn0(X), the entire primitive cohomol-
ogy. The cohomology of the affine Pn+1BX can be computed using the
algebraic deRham complex, in fact, using a bounded piece of it: any class
in Hn+1(Pn+1BX) can be represented by a meromorphic differential



331

where

is the standard section of 03C9Pn+1(n + 2), and A is a polynomial chosen so
that deg(a)= 0, i.e.

deg(A)=d·(n+1)-(n+2)=tn.

The key observation is that a class in Hn+1(Pn+1B X) lands in Fa(X) if
and only if it can be represented by a meromorphic differential a with
pole of order  n-a + 1, i.e., such that f a divides A. This gives a map

and the proof is concluded by checking that

Next we consider the variation v(X) of the Hodge structure of X. It
consists of a linear map

where H1(0398X) is the tangent space to the deformation space of X (more
precisely, its image under the Kodaira-Spencer isomorphism), p(X) is the
period of X, considered as a point of an appropriate flag manifold F. The
tangent space to F at the flag F0 ~ ... D F n can be naturally identified
with a subspace of the product of tangent spaces to the various Grass-
mannian quotients of F, i.e., with a subspace of

and by the infinitesimal period relations,

In fact, we have the more precise version:

THEOREM 2.2 [7]: The ith piece vi of the infinitesimal variation of the Hodge
structure of a hypersurface can be identified with the homomorphism

given by multiplication.
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PROOF: This is quite easy: the identification of H1(0398X) with Rd was
explained in the proof of Proposition 1.1. Let g~Sd, A E Stl, and let g,
A be their images in Rd~H1(0398X), Rtl~Fi/Fi+1. To compute the
variation of A in the direction g, one simply differentiates

with respect to t, then sets t = 0. Up to a universal scalar, the answer is

as claimed. Q.E.D.
The one remaining "algebraic" data in a Hodge structure, or its

variation, is the cup product

Again, there is only one way this could fit with the Jacobian ring; the
main computation in [4] proves that it does:

THEOREM 2.3 [4]: Cup product

can be naturally identified with the ring multiplication

In the rest of this section we describe the structure of the ring R. More
generally, let

be n + 2 homogeneous polynomials on Pn+1 which have no common
zero in Pn+1. Let

be the ideal they generate,

R = S/I

the quotient ring. In our application the f are the partial derivatives of f,
all of degree d - 1.
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Our assumption on the f suffices to guarantee that they form a regular
sequence ([9], p. 660). In particular, the Koszul complex for R:

is exact ([9], p. 688).

COROLLARY 2.4: dim(Ra) depends only on a and on the degrees di =
deg(fi).

PROOF: The Koszul complex preserves the grading and computes the
dimension of any graded piece of R as an alternating sum of dimensions
of graded pieces of the free modules S ~ 039BkV*. Q.E.D.

The main result concerning R is:

LOCAL DUALITY THEOREM 2.5: (1) R is an Artinian ring of top degree

(2) R° is one dimensional.
(3) The pairing

is perfect, for any a.
For a proof, see [9], p. 659.
One application is used repeatedly in Torelli problems and deserves

mention:

MACAULAY’S THEOREM 2.6: If a + b  a, the bilinear map

is non-degenerate in each factor.

This is an immediate consequence of 2.5.

§3. The Carlson-Griffiths method

Let X~Pn+1 be a generic, non-singular hypersurface of degree d,
defined by f = 0, and v(X) its infinitesimal variation of Hodge structure.
We treat v(X) as "known" and X as "unknown". To be precise, this
means that we are given vector spaces Wtl (ti=(i+1)d-(n+2),
0  i  n ) and Wd, plus bilinear maps
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and

where a = (d - 2)( n + 2). We are also told that there exists a function f
such that if R = R(f) is the Jacobian ring of f, there exist vector space
isomorphisms

which make the vl , Qi commute with multiplication in R. Needless to say,
we are given neither f nor any of the X’s.

Let t be the smallest non-negative tl:

where

is the smallest i such that Fn-l ~ (0). The main result of [4] is as follows:

THEOREM 3.1: Assume that the remainder of n modulo d satisfies

and that the isomorphism

can be recovered from v(X). Then X can be recovered from v(X), hence
generic Torelli holds for X.

REMARK 3.2: The assumption on n is equivalent to:
(1) td- 1, and
(2) 2td-1.

By (1) we have:

Rt = stv

so the isomorphism a is equivalent to providing W with "polynomial
structure", i.e., an isomorphism:
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PROOF: Applying all the vi in succession we get a multilinear map:

Coinbining with the polarization, we have a multilinear map

hence a bilinear map

or a linear map

Composing on the left with the (known) map Àt’ and on the right with
the (unknown) isomorphism Àd, we get

At this stage, we cannot construct 03C8 from our data. However, ker(03C8) is
known since it depends only on À,, cp. On the other hand, 03C8 is induced
from multiplication in R, hence it factors through

and by Macaulay’s Theorem 2.6:

Therefore, 03BC(ker(03C8)) gives us J2’ t inside S2tV. By Macaulay’s theorem
again, this determines Jd -’ in Sd-1 V (we are assuming 2td - 1 !) and
by Proposition 1.1 this determines X. Q.E.D.

By the theorem and the remark following it, we are led to ask for
which n, d can we recover the polynomial structure on W t. The only case
where this is clear is when t = 1, since then any isomorphism V ~ W will
do. Unfortunately, the only way to satisfy conditions (1), (2) with t = 1 is
to take d = 3, and n divisible by 3.

COROLLARY 3.3: [4] Generic Torelli is true for cubic hypersurfaces of
dimension n = 3m.



336

§4. Quadrics of rank 4: the simplest case

Let be a vector space, and let

be the multiplication map. For any vector space U, let P(U) denote the
projective space of hyperplanes in U, so that U = H0(P(U), 0(1)). Let

be the Veronese embedding, given by the complete linear system |OP(V)(t)|.

LEMMA 4.1: (1) ker(03BC) is the system of quadrics in P(StV) containing the
Veronese variety S.
(2) S is the base locus of ker(,u).
(3) ker(03BC) is spanned by quadrics of rank 4.

PROOF: Choose a basis (xl)i~I for V. It induces bases (of "monomials")
for StV, S2(StV), S2t V. Any basis element of S2(StV) is taken by 03BC to a

basis element of S2tV, so the basis elements of S2(StV) can be grouped
into equivalence classes indexed by the basis of S2tV. Therefore ker(03BC) is
generated by differences ql - q2 where ql, q2 are basis elements of

S2(StV) in the same class. Since each qi is a quadric of rank 2, part (3) is
proven.

Part (1) is a triviality: identifying S2(StV) with H0(P(StV), 0(2)) and
S2tV with H0(P(V), O(2t)), g becomes the pullback:

This proves that S c base locus (ker(03BC)). Let p be a point of the base
locus, and single out a basis element xo of V. Using the quadrics ql - q2
as above, one sees immediately that p=s(p0) where po is the unique
point of P(V) for which

Let W be another vector space, and

an isomorphism which we treat as " unknown", to be recovered modulo
an automorphism of V.

LEMMA 4.2: The polynomial structure À on W is determined by the linear
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subspace 03BB*(ker 03BC)~S2W, and also by the image 03BB*(S) ~ P(W) of the
Veronese.

PROOF: If À *(ker 03BC) is given, we recover T : = 03BB*(S) as its base locus.
Choose any isomorphism

Then the isomorphism

is the inverse of our desired À. Q. E. D.

THEOREM 4.3: Generic Torelli holds for d = 2 n + 3, n  2.

REMARK: Theorem 4.3 is a special case of Theorem 5.5. The only result of
this section which is needed in the sequel is Lemma 4.2.

PROOF: The Carlson-Griffiths theorem 3.1 applies, since we have

To determine the polynomial structure

it suffices, by the previous lemma, to determine

Using the map

constructed in the proof of Theorem 3.1, we propose the recipe:

(03BBt)*(ker(03BC)) = span(ker(~) n (quadrics of rank 4}),

assuming that our hypersurface X c P(V) is "sufficiently general". To
prove this, we use the "unknown" map À t to obtain an equivalent
statement:

ker(03BC) = span(ker(03C8) ~ {quadrics of rank 4}),



338

where

is induced from the multiplication in R. The inclusion " c 
" follows from

part (3) of Lemma 4.1, which asserts that:

Since

the inclusion " ~ " is equivalent to:

it ({quadrics of rank 4}) n Jd-1 = {0}

for generic f E SdV. We see this by the following dimension count:
Linear functions on stv form a vector space of dimension

( t + n + 1 ) = ( 2t). Any quadric of rank 4 can be written in the formn+1 t

ab - cd

for some linear functions a, b, c, d, and no change is affected if a

(respectively c) is multiplied by an arbitrary constant while b (respec-
tively d ) is divided by the same constant. Hence, the variety of quadrics
of rank  4 in stv, as well as its image under it, have dimension no larger
than

Next we claim that for any g E Sd-1V, g ~ 0, the family of f~SdV such
that

has dimension n+2+(n+d n): This is clear since any element of

(J(f))d-1 is the derivative of f with respect to some derivation on V. The
derivations form a vector space of dimension n + 2, and the kernel of
each is a vector space of dimension ( n + d).
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Altogether, we have

dim{f~ SdV| J(f) ~03BC(rank 4 quadrics) 3 {0}}

hence for generic f E SdV,

as claimed, so our recipe does indeed produce 03BB* ker(03BC). Q.E.D.

§5. Quadrics of rank 4: general case

The recipe for recovering ker(,u) proposed in Section 4,

ker(03BC) = span(ker(03C8) n {rank 4}),

is as simple as one may wish. Unfortunately, we do not know for which
values of n, d it holds for the generic polynomial f. In this section we
describe an alternative procedure, still based on [4], which works for
"almost all" n in the Carlson-Griffiths range

Instead of ker(it), we search for the subvariety

of polynomials in SkV which are divisible by a linear factor. Here k
stands for any integer satisfying k  d - 1, 2k  d - 1, and will eventu-

ally be identified with t.

LEMMA 5.1: The subvariety (03BBk)*(LDivk)~ Wk determines, up to auto-
morphism of V, the polynomial structure
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PROOF: LDivk determines the subset

A={a~SkV|a has k distinct linear factors)

since a E LDivk is in A if and only if the tangent cone to LDivk at a
consists of k distinct linear subspaces of dimension equal to dim LDivk.
The closure A in SkV of A is the image of the Segre map

Finally, A determines the Veronese variety S c A as its smallest equisin-
gular locus. Applying (03BBk)*, we see that (03BBk)*(LDivk) determines

(03BBk)*(S)~Wk, which determines A k by lemma 4.2. Q.E.D.

Let

be the locus of all divisible polynomials in SkV, and for a fixed a e SkV
let

LEMMA 5.2: (1) Divk={a~SkV|B(a)~~}
(2) LDiv k = {a E SkV|dim(B(a)) dim(LDivk) = n + 1 + ( n + k )}.n+1

PROOF : (1) a 0 b - c 0 d is a non-zero element of ker(ii) for some c, d if
and only if the polynomial a - b has a second factorization into polynomi-
als of degree k. This happens, for some b, if and only if a itself is

divisible.

(2) a - b can be refactored if and only if a, b can be factored in the
form:

where 0  k’ = deg( a’) = deg( b’)  k, and a’ 4-- b’, a" =t= b". (The refac-
torization is then (a’. h"). (a". b’).) Hence, for a given a E SkV, B(a) is
an open dense subset of
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so we have

dim(B(a)) = max{dim Divkk’|a has a factor oi degree k’}

where Divk is the irreducible component of Divk consisting of poly-
nomials b with a factor of degree k’. Observe that

is a strictly convex function of k’ (since the second difference:

is positive), therefore the function

takes its maximum (on the interval 1k’k-1) at the endpoints,
k’ = 1 or k’ = k - 1. Thus :

dim(B(a)) = max{d(k’)|a has a factor of degree k’}

is &#x3E; d(1) = dim LDiv’ if and only if a has a linear factor. Q.E.D.

PROPOSITION 5.3: The kernel of the multiplication map

determines the polynomial structure on Wk if k  d - 1, 2k  d - 1 and

Here 03B1 = (03BB2k)*°03BC°S2(03BBk)*-1.

REMARK: Explicitly, the inequality is

Note that dim(J2k) equals the right hand term of the inequality since
an element of J2k can be written uniquely as a linear combination of the
n + 2 basic elements of Jd -1 with arbitrary polynomials of degree 2k -
( d - 1) for coefficients.
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We remark also that the main use we make of the Proposition is in the
proof of Theorem 6.4, where we need only the case d = 2k, n &#x3E; 1. In this

case the messy inequality simplifies, miraculously, to:

k &#x3E;- 4.

PROOF: Our recipe this time is as follows: For a E Wk, let

and let

Then, we claim, D has a unique irreducible component whose dimension
is &#x3E; dim(LDivk), and this component, which is thus determined by
ker(a), is (03BBk)*(LDivk). By lemma 5.1 we recover the polynomial
structure on Wk as claimed. Our claim follows immediately from the
proof of lemma 5.2, where we saw that LDivk is the only maximal-di-
mensional irreducible component of Divk, and from the following inclu-
sions :

LEMMA 5.4: (03BBk)*(LDivk)~D c (03BBk)*(Divk).

PROOF: Pulling back to SkV via

the lemma is equivalent to:

Let

be the multiplication map (corresponding via 03BBk, À2k to 03B1) and for
a E SkV let

Since
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and for all a~ SkV there is the trivial inclusion

the inclusion

follows from lemma 5.2(2).
From now on, assume that a E (03BBk)-1(D), i. e., that

dim(Bv(a))  dim(LDivk).

Let

There is a correspondence 03C3:C(a)~Bv(a) defined by:

It satisfies:

(1) dim(03C3(Q))  3 for any Q E C(a).

(Proof: if b E 03C3(Q) then the hyperplane {b = 0} must be tangent to the
quadric Q at some non-singular point of Q, i.e., the hyperplane (b = 0}
(which determines b up to scalar) must lie in the dual variety of Q, which
is a quadric surface.)

(2) a is surjective, by the definition of Bv(a).

Combining (1) and (2) we find:

Consider now the restriction go of the multiplication map

to C( a ). By the inequality just established, there is a non-zero Q~03BC-0 (0).
If Q=a~b-c~d then b E B(a), so a E Div k, concluding the proof of
the lemma and of the proposition. Q.E.D.
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Combining Proposition 5.3 (with k = t) with the Carlson-Griffiths
theorem 3.1, we obtain:

THEOREM 5.5 : If the remainder of n modulo d satisfies

and if n satisfies

where

and

s=2t-d+2,

then a generic n-dimensional hypersurface X of degree d is determined by its
infinitesimal variation of Hodge structure v(X), hence the generic Torelli
theorem holds for X.

It remains to check for which n, d the inequality of the theorem holds.
For n = 1 it is easy to check that it never holds, so we might as well
assume n  2. We obtain the sufficient condition:

or, upon division:

We now fix d, s, t, i.e. we let n vary in a fixed congruence class modulo d.
For n &#x3E; t - s - 1 the left-hand side equals

and therefore is given by a polynomial in n, all of whose coefficients are
positive, of degree

t-s=d-2-t=rem(n,d).

If we require t - s &#x3E; 2 then for n sufficiently large (ns2-s-1 will do,
for instance) the required inequality will hold.
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COROLLARY 5.6: Fix d and choose a remainder

Generic Torelli is true for all but a finite number of n which are

congruent to r modulo d.
The results are less impressive when we list the good d ’s for fixed n :

§6. The polynomial structure via symmetrizers

In this section we abandon the map

of [4], and consider instead the bilinear map

DEFINITION 6.1: Given a bilinear map

we define its symmetrizer to be the vector space

together with the natural bilinear map

defined by

Our main observation concerns the symmetrizer of the multiplication
map

We claim that it can be identified with the " previous" multiplication
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that is, that any P : R’ - Rd satisfying the symmetry condition 6.1 is

given by multiplication with a uniquely determined element p E Rd-t.
More generally, we have:

PROPOSITION 6.2: Let R be the Jacobian ring of a generic polynomial f of
degree d in n + 2 variables, where d, n satisfy

Then for a  d - 1, b  d, the symmetrizer of the multiplication map

is the multiplication map

REMARK: We do not know whether the proposition is true for all f or
only for generic f.

Since the proof of this proposition seems less interesting than its

application, we defer the proof to the end of this section. Our use of the
proposition is based on the following intrinsic version:

LEMMA 6.3: For i = a, b, a + b, let W’ be a vector space and let

be an isomorphism of vector spaces, where RI is the i th graded piece of the
Jacobian ring R of a polynomial f ( of degree d, in n + 2 variables). Assume
that the diagram

commutes, where B : W a X Wb ~ Wa+b is a given bilinear form. Let

be the symmetrizer of B, where wb-a is the vector space denoted T in
Definition 6.1. There is then a unique homomorphism
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which makes the following diagram commute:

Further, À b - a is injective if a0, b(d-2)(n+2), and 03BBb-a is an

isomorphism if f is generic and if a, b, d, n satisfy the numerical
restrictions of Proposition 6.2 : a  d - 1, b  d, and

PROOF: Clearly, 03BBb-a must satisfy

for any p~Rb-a and u~Wa, and this defines 03BBb-a uniquely and
unambiguously. If 03BBb-a(p) = 0 then for all m E R a 

so by Macaulay’s theorem 2.6 we have p = 0 (assuming a  0 and
b  ( d - 2)( n + 2)). Finally, if a, b, d, n satisfy the hypotheses of Proposi-
tion 6.2 then Bb-a,a is the symmetrizer of Ba, b, so 03BBb-a is an isomorphism
by functoriality of the symmetrizer construction. Q.E.D.
We can now prove the main result of this paper.

THEOREM 6.4: Generic Torelli for hypersurfaces.
Assume that n, d fall into none of the following cases:

(0) n = 2, d = 3. (The cubic surface )
(1) d divides n + 2.
(2) d = 4, n ~ 0(4), or d = 6, n = 1 (6).

Then a generic n-dimensional hypersurface X of degree d can be
recovered from its infinitesimal variation of Hodge structure v(X). In
particular, the period map for such hypersurfaces is generically injective.

Remarks on the exceptions

In case (0) the theorem is false, as is local Torelli, since cubic surfaces
depend on four parameters while their Hodge structure is trivial, hence
has no moduli.

The exceptions in case (2) seem to be due to a technical weakness of
our method, rather than to any genuine difference in behavior. However,
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we feel that such an intrinsic difference might exist for type (1). The
difficulty is easy to document in the two special cases n = 2, d = 4
(quartic K3 surfaces) and n = 4, d = 3 (cubic fourfolds). These special
cases share two properties: the period domain D is symmetric, vaguely
suggesting an arithmetic flavor; and the period map is étale, showing on
the one hand that generic and global Torelli are equivalent in these cases,
and on the other than the infinitesimal variation v(X) contains no
information beyond the bare Hodge structure H(X), so our techniques
are totally useless here.

Both of these properties have (weaker) analogues for the general case
of type (1). The period domain D has a symmetric quotient Do, parame-
trizing partial Hodge filtrations

The partial period map, to a subvariety of Do, is again étale. In other
words, the infinitesimal variation of the first non-zero piece of the Hodge
filtration is an isomorphism, hence contains no information beyond
H(X). (This is the only piece used in our proof.)
We do not know, of course, whether this special behavior is signifi-

cant. It might well be, for instance, that the variation of the second piece,
given by the map

is sufficient to recover X in all cases except for the quartic surface and
the cubic fourfold.

PROOF oF THEOREM 6.4: Recall first the cases in which Torelli (even the
global version) is already known:

d  2: hyperplanes and quadrics have no moduli.
d = 3: the result is trivial for plane cubic curves, false (and excluded)
for surfaces, and known for threefolds [6].
d = 4: the case of quartic surfaces is a special case of the global
Torelli for K3 surfaces [14].
n = 1, d4: the result follows from the Torelli theorem for curves

plus the uniqueness of a non-singular gn , proved in [2].
Excluding these cases amounts precisely to the assumption

which we make from now on.
The infinitesimal variation of the first piece, Hn-i0,l0(X), of the

cohomology of X is given to us as a bilinear form
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We know that isomorphisms 03BBl: R’ - W (for i = t, d, t + d ) exist which
make the diagram

commute. By Lemma 6.3, we get a new diagram

where the vertical maps are isomorphisms and the bottom row consists
entirely of data determined by v(X).

If d - t &#x3E; t we exchange t, d - t, and in any case we can iterate this
construction. We obtain a sequence of diagrams

in which the X’s are isomorphisms, the bottom rows are successive

symmetrizers of Bt,d and hence are determined by v(X), and where the
triples (al, bl, ai + hi) follow the Euclidean algorithm for t, d. In the last
diagram we have ai = bi = k, where k is the greatest common divisor

Excluding the cases where d = 2 or where d divides n + 2, we have
kd- 1. We claim that the polynomial structure on Wk can be de-
termined from the map Wk X Wk ~ W2k: if 2k  d - 1 then W2k ~ S2k
so we can use Lemma 4.2. Otherwise, we use Proposition 5.3. The

required identity becomes

which is easily seen to hold for k &#x3E; 4 (i.e., d  8) and n &#x3E; 2. We conclude
that the isomorphism 03BBk : Sk = Rk ~ Wk can be determined, modulo an
automorphism of the underlying vector space V = S1.
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Since the " polynomial structure" maps

for a = a and 03B1 = b determine va+b, we can start with vk=03BBk and
recover, inductively, the maps val+bl, beginning with v2k and ending with
Pd’ The kernel 

determines jd- by Macaulay’s theorem, and this determines the isomor-
phism class of X by Proposition 1.1. Q.E.D.
We still need to prove Proposition 6.2. We replace it by a slightly

stronger version:

PROPOSITION 6.5: The symmetrizer of Ba,b is Bb-a,a whenever a + b 
( d - 2)( n + 1) and 2a+b(d-2)(n+2)+ 1. ( This contains 6.2 as a
special case.)

PROOF OF PROPOSITION 6.5: Consider the homomorphism

( T is the symmetrizer of Ba,b) defined by

for p E Rb-a, 1 ~Ra. It is clear that for p E Rb-a, P = 03B1(p) satisfies the
symmetry condition, hence P E T. Moreover, a is injective by Macaulay’s
theorem.

As we saw in 2.4, the dimensions of R a, Rb, Ra+b, Rb-a are indepen-
dent of f for non-singular f. We think of each R’ as a vector bundle over
the parameter space (P(Sd)B Discriminant) of non-singular hyper-
surfaces. T becomes a subvariety of the vector bundle

Hom( Ra, Rb),

defined by fiber-linear equations and containing the vector sub-bundle
03B1(Rb-a). By semicontinuity of dim( T ), the equality 03B1(Rb-a) = T for one
non-singular f implies the same equality for generic f. We prove the
proposition for a particular f, namely the Fermat hypersurface
f = 03A3n+2i=1xdi. In this case J is generated by the monomials xd-1l.
We claim that if a + b  ( d - 2)( n + 1) then

where I is any multi-index of degree a. (The superscript "b" indicates bth
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graded piece of the respective ideals.) It is clear that both ideals (xI),
((xl ) : Ra) are generated by monomials, so it suffices to prove that for a
multi-index K of degree b,

The implication ~ is trivial, so assume xK· R a c (xI), while Ki  Il for
some i, 1 in+2. Let L be the multi-index defined by:

We have

so our assumption xK·Ra~(xI) implies

or

contradiction. This proves our claim.
From the symmetry condition for P~T:

for I, J multi-indices of degree a, we conclude

so there is an element

such that

We need to prove that p, is independent of I. Write

the summation extending over (non-negative) multi-indices H of degree



352

b - a. Note that PI can be modified by anything in Ann(xI) without
altering P. If we let M denote the "maximal" multi-index (d - 2,...,
d - 2), we have

so we are reduced to proving the following statement:

If H, I, J are multi-indices of degree b - a, a, a respectively,
and H + I  M, H + J  M, then pI,H = pJ,H.

Observe that if, in addition, H + I + J  M, then the desired state-
ment follows from the symmetry condition:

by comparing coefficients of the non-zero monomial x H+I+J . The gen-
eral case of our statement then follows from:

LEMMA 6.6: Let H, I, J be multi-indices of degrees b - a, a, a respectively,
satisfying

Then either

of there is a multi-index K of degree a satisfying

PROOF: Let L = max(I, J ). The condition on K is

and the assumption implies M - H - L &#x3E; 0. Now if I, J are disjoint (i.e.,
L = I + J ) then we have

while otherwise deg( L )  deg( I ) + deg( J ), hence:
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so it is possible to choose K of degree a satisfying

as required. Q.E.D.
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