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THE EXCEPTIONAL REPRESENTATIONS OF Gl,

P.C. Kutzko *

The purpose of this paper is to provide a characterization of the set of
exceptional supercuspidal representations of Gl,(F) where F is a local
field of residual characteristic p and, in particular, to provide a proof for
Lemma 4.2.2 of [5].

In §1, we describe the construction of a set of supercuspidal represen-
tations of Gl,(F) by the method of Weil; supercuspidal representations
which cannot be constructed in this way are said to be exceptional. In §2,
we show that a “Weil representation” which belongs to a ramified
quadratic extension of F may be constructed by induction from a
one-dimensional representation of an open subgroup of Gl,(F) and we
show that the inducing representation must satisfy a certain condition
((3.01)). In §3, we show that, conversely, any supercuspidal representa-
tion which is induced from a representation satisfying (3.01) is a Weil
representation. In §4, we show that condition (3.01) is equivalent to that
given in Lemma 4.2.2 of [5]. In what follows we denote the ring of
integers in F by O, the maximal ideal of O, by P and we set ¢ = [O: P,].
Other notation used here is explained in [5].

Section 1

Let E/F be quadratic and separable, let 7 be the nontrivial F-automor-
phism of E, denote by Ny, and Tr - the norm and trace maps of E/F
and let w; - be the nontrivial character of the multiplicative group, F*,
of F which is trivial on Ny, oE™.

Let C*(E) be the space of compactly supported, locally constant,
complex-valued functions on E, let { be a nontrivial character of the
additive group, F*, of F and set Yz =y © Trg r. Then there is a unique
choice of Haar measure ys on E* for which Fourier inversion holds with
respect t0 Yz, p; that is, if we define the map f— f on C*(E) by
F(B)= [sf(@) s, r(eB)di () then we have /(x) = f(~x).

Now it is a consequence of the work of Weil [7] on symplectic groups

* The author was partly supported by N.S.F. Grant §MPS75-07481.
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4 P.C. Kutzko [2]

(see [2], p. 7) that there is a representation r of Sl,(F) on C*(E) such
that

r((:)‘ S“Df('B)=“’E/F(x)|x|}5/2f(x,3) (1.01)
r(((l) )1)])1((:3)=‘P()’NE/FB)]((B) (1.02)
r(io—l (1)])f(ﬁ)=YE/Ff(B’) (1.03)

where v, is a complex number whose value may be found in Lemma
1.2 of [2].

In [2] it is shown that this representation commutes with left transla-
tions by elements a of E for which Ny ra =1 so that C*(E) may be
decomposed into a sum of Sl,( F) invariant subspaces which are parame-
trized by characters of the subgroup ker N, of E*. It is then shown that
the representations of Sl,(F) thus obtained are irreducible and that
those representations which are parametrized by nontrivial characters of
ker N, induce to supercuspidal representations of GIl,(F) whose
irreducible constituents will be referred to here as Weil representations of
Gl,(F) belonging to E/F.

Cartier has observed that the Weil representations belonging to E/F
may also be obtained by first inducing the representation r to Gl,(F)
and then decomposing the resulting representation under a certain natu-
ral action of E* and it is this approach, summarized in the following two
lemmas, which we will use. Since this approach has been described in
detail elsewhere [ N] we will omit proofs.

LEMMA 1.1: There is a unique representation ¥ on the space C*(F*X E)
for which

F([g g—l])f(z’ﬂ)=“’E/F(x)|x|}5/2f(z,xﬁ) (1.08)
F([(l) {])f(z’B)=‘P(yZNE/FB)f(z,B) (1.05)
(0, )1 =vemar i helf 8 (106)
F([:)v ?])f(z’ﬁ)=f(zw’ﬁ) (1.07)

where f~ f is the Fourier transform in the second variable.
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LEMMA 1.2: Let 0 be a character of E* and let Cy be the subspace of
functions f in CP(F*X E) for which f(xNg,pa, Ba=")=6(a)|a|?*f(x,
B), a in E*. Then Cg is stable under 7 and if 6 is not of the form x o N ,r
then C, is an irreducible supercuspidal Gl,(F) subspace of C*(F*X E).

LEMMA 1.3: Denote by W, (8) the representation of Gl,(F) on Cy obtained
as above. Then W, (8) is equivalent to the representation m(8) defined on
page 144 of [2]. In particular, W, (0)=n(Indy, .y, 0); that is, W,(0)
corresponds in the sense of Langlands to the representation Indy, .y 0 of
the Weil group, W, of F.

PrROOF: We recall that the representation #(6) is induced from a repre-
sentation 7(8, Y ) of the subgroup G, of Gl,(F) consisting of elements
g in G1,(F) for which det g lies in N, F*. 7(, ¢) acts on the subspace
C, of functions f in C*(E) which satisfy f(aB)=8#""(a)f(B) for a in
ker N, and may be characterized by the following formulae ([2], p. 11):

w(o,w([ff”"‘ ?])f(ﬁ)=lal'g/20(a)f(aﬁ) (1.08)
7(0,¢)(g)=r(g) forginSl,(F). (1.09)

(One should note that C, is invariant under r.)

By Frobenius reciprocity, it will be enough to show that C, is G, Ve
isomorphic to a subspace of C,. In fact, one checks easily that if G, is
the subspace of C, consisting of functions f(x, 8) for which f(x, 8)=0
when x is not a norm from E then C;" is the required subspace and that
[ fwhere f(B)=f(1, B) is the required G, , isomorphism from ;" to
Cy.

COROLLARY 1.4: The equivalence class of W, () is independent of Y. If 8,
0, are characters of E* then W,(0,) is equivalent to W, (8,) if and only if
either 0, =0, or 8, =07.

We note that a Weil representation W may belong to more than one
quadratic extension of F. If W belongs to the unramified quadratic
extension of F, we say that W is an unramified Weil representation;
otherwise we call W ramified. An irreducible supercuspidal representa-
tion of Gl,(F) which is not a Weil representation will be called excep-
tional.

Section 2

The goal of this section is to describe a given Weil representation as an
induced representation. To this end we need some preliminaries concern-
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ing the construction of supercuspidal representations by induction from
open subgroups. Further details and proofs are given in [5]. Let V" be the
standard plane over F; i.e., V=F ® F. Then by a lattice flag in V we
mean a sequence L=...L_,, Ly, L,,... of free, rank two O,-sub-mod-
ules of V such that L, DL, ., PpL,=L;,, and dimg ,pL,/L; =1
There is a natural action of the ring, M,(F'), of 2 X 2 matrices over F on
the set of lattice flags which is, in fact, transitive; if we call two lattice
flags L' and L? equivalent when there exists an integer m such that
L2=1!,, forall k then M,(F) acts transitively on the set of classes of
flags as well.

Given a lattice flag L, we denote by b, (L) the subset of elements g in
M,(F) for which gL, c L, for all k; we set b(L)= Db (L) and note
that for k> 0, b, (L) is a principal two-sided ideal in b(L).

We set B(L)=0(L) and for k> 1 set B,(L)=1+Db,(L). We note
that for k> m/2 > 1, the map x— x — 1 induces an isomorphism of
abelian groups of B,(L)/B,, (L) and b,(L)/b,,(L). We note also that
the pairing of b,(L)/b,(L)Xb,_,,(L)/b,_,(L) into F*/P. given by
(x, y) = tr xy is nondegenerate. It follows that if ¢ is a character of F* of
conductor P, and if for b in b,_,,(L) we define the character ¢, on
B (L) by ¢,,(x) =4 (tr b(x — 1)) then b — ¢, induces an isomorphism of
b,_,./b,_, with the complex dual, B, /B,,, of B, /B, whenever k > m/2.

Let, now, 7 be an irreducible supercuspidal representation of Gl,(F).
Call 7 unramified if it may be c-induced (see [3] for the precise definition)
from the subgroup F*- Gl,(0,) and call = ramified otherwise. Then it is
well known (see, e.g., [1]) that a Weil representation is unramified as a
Weil representation if and only if it is unramified in the above sense.

On the other hand, [3], ramified supercuspidal representations may be
characterized as representations which may be induced from the normal-
izer, K(L), of some subgroup B(L) of Gl,(F') (all such subgroups are,
of course, conjugate).

To be precise, call an element b in M,(F) b(L)-generic of level 2k + 1
if

1. F[x]/F is quadratic ramified,;
2. F[x]Nb(L)=0p
3. vpg(x)=2k+ 1.

It is easy to see that x lies in b,,, (L) and that, in fact, the set of
b(L)-generic elements of level 2k + 1 is precisely [12*'B( L) where IT,
is any generator of the ideal b,(L) of b(L).

PROPOSITION 2.1: 1. With notation as above, let n be a positive integer and
let b be a b(L)-generic element of level 1 — 2n. Let 8 be a character of the
subgroup T, = (F[b])* of Gl,(F) such that (B)= V(T rb(B— 1))
for B in Uf\y,. Then the complex-valued function 8y, on T,B, (L) defined
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by 6y, (Bk)=0(B)Y,(k), B in T,, k in B,(L) is in fact a well-defined
character of T, B,(L) which induces an irreducible supercuspidal represen-
tation w(L; ¢, 0) of Gl,(F). We have w(L; ¢, 0,)=«(L; ¢,, 0,) if and
only if 0, =0,.

2. Given an irreducible ramified supercuspidal representation 7 of Gl,(F)
and a lattice flag L there exist n, b, 8 as above and a character x of F* so
that w=a(L; ¢, 0) ® x o det. If f(x)<n then x may be taken to be
trivial.

ProOF: This is Proposition 3.1.1 of [5].

In order to describe a given Weil representation W as an induced
representation it will be helpful to write W as W(6) where 6 enjoys
certain properties. Specifically, if we denote by f(8) the exponent of the
conductor of # and by d(E/F) the exponent of the different of the
extension E/F then the existence of an appropriate character 8 is given
by the following lemma.

LEMMA 2.2: Let W be a ramified Weil representation of Gl,(F). Then
there exists an extension E/F, a character 0 of E* such that f(6)>
2d(E/F)—1 and f(8)—d(E/F) is odd, and a character x of F* so that
W is equivalent to the representation W(0) ® x o det. If there exist E’, §’,
x’ with the above properties and if E' = E thenp =2, f(8)=2d(E/F)—1
= 2d(E'/F)~1=f(0") and [(wgr- w5)s) = d(E/F).

ProOF: This follows from Corollary 1.18 of [4] and the fact that
W(0)=m(Indy, ,u,9).

In what follows, we fix a ramified quadratic extension E/F and a
character 8 of E* for which f(8)—d(E/F) is odd and f(0)> 2d(E/F)
—1; we set n(0)=1/2(f(0)+d(E/F)—1). In addition we fix a char-
acter y of F* of conductor P, which if p = 2 has the additional property
that ¢(x2+ x) =1 for x in O,. We denote by b= b,(8) an element of E
for which 6(B)=¥(Trg,£b(B— 1)) for B in UL/ P*D/2 and by ¢, =
¢ (E/F) an element of F for which wg, p(x)=4(cy(x— 1)) for x in
ULKE/F)+1/2],

Finally, we fix a lattice flag L", n = n(8), by setting L = P} " & O;
L? = P, " & P.. We note that then

Op Pp7"

Pr P
P 0O '

bzk(L")=PFk pr P
F F

; 52k+l(Ln)=Pl-l‘(

PROPOSITION 2.3: With notation as above, define the function f, in the
space Cy by fo(x, B)= 0_](:3)|:B|Z'1/2 if xNE/FB lies in UF[(HH)/ZI, Jo(x,
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B) = 0 otherwise. Then for k in B,(L") we have that
w(6)(k)fo=1i(k)f
where

O _NE/Fb
1 Trgpb+e,|

PRrROOF: It is a straightforward computation, using formulae (1.04), (1.05)
and (1.07), that

W(6)(k)fo=1b5(k)fo

when k lies in B, (L") and is upper triangular. Our result will thus follow
if we show that

1 0

W(0)[y 1]f0="1b(_yNE/Fb)fO
when b lies in P2 "/, Since

I ] | PR

y o1 1 0lfo 1fLl-1 0
it will suffice, by (1.05), (1.06), to show that if f’o(z zB7)= 0 then
Y(—yzNg,rB) =¥ (—yNg,pb); that is, to show that the support of the
function f/ (2, zB7)is contained in the set of (z, B) for which zNg ,-(Bb~ h

lies in ULn+ /2],
Now we have that

Jolz,2B7) = [ 07" (@)lalz" 2, (azB7) dpy ()

where Y is the set of a for which Ny ra lies in z~'U!"* D72 Since
f(8)=2n— d(E/F)+ 1> d(E/F) we have that N, ,(UL/®* /21y
UL+1/21 and thus that f,(z, zB87) is a nonzero multlple of

-1 -1/2
./;)é(f(a)+|)/2]fy0 (a(l +Y))|a|

X‘PE/F(“(I + Y)zﬁf)dl‘.p(a)d#.p('}')

= [ 07 (@)lalz" e p(azB7)

X _/;)EMM)/“‘PE/F((“ZBT —b)y)dp,(y)dp,(a)
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unless azB™ — b lies in P24 E/DAUO+ /2] that is, unless azB5 ™! lies
in UU@/D] (Here, one uses the fact that v (b)=1—2n so that
2—d(E/F)—[(f(0)+ 1)/2] = vg(b) = f(8) — [(f(O) + 1)/2] =
[/(8)/2].) Finally, since zNg ,;a lies in UL"*D/2) and since, in general,
Ng,rUg C Uy where s= min([(r + d(E/F))/2], r) one checks that
fo(z, zB™) =0 unless zNg ,-(Bb~") lies in UL+ D721,

COROLLARY 2.4: With notation as above, there exists a character 0 of T;
such that W(8) is equivalent with w(L"; Y, 8).

PrOOF: We note first that b is b(L")-generic of level 1 —2n since
ve(Trg, pb+cy) > min(l —n, 1 -d(E/F))=1—n. Next, since y; is
stable under 7;B,(L"), the span under T;B,(L") of f, decomposes into a
sum of the form & fo » where 0 is a character of T of the form
described in Proposmon 2.1 and where W(0)(h) fo =0y;(h) fo for 4 in
T;B,(L"). Finally, since distinct characters 4, A3 1nduce distinct irreduci-
ble supercuspidal representations of Gl,(F), we see that the span under
T;B,(L") of f, is one-dimensional, that we may set § = §, whence fa, = Jfos
and W(0) is equivalent to #(L"; ¥, 8).

Section 3

In this section we fix, once and for all, an integer » > 1 and a b(L")-
generic element, b, of level 1 —2n. Our goal is to determine whether
some or all of the representations «(L"; ¢, §) are Weil representations.
From Proposition 2.3, it is clear that in order that some representation
a(L"; Yz, 0) be Weil it is necessary that there exist a ramified quadratic
extension E/F with 3d(E/F)<2(n+ 1) and an element b in E with

vi(b)=1—2n such that
iotrb=Trg,pb+c,(E/F) (mod P;i"~1/21)
ii. (detb) /Ny, p=1(mod Pin+D/21), (3.01)

We will say that such an element b is Weil-generic. Our main result in
this section is

PROPOSITION 3.1: The representation w(L"; ¥;;, 8) is Weil if and only if b
is Weil-generic.

We will need several lemmas.

LEMMA 3.2: Suppose that the pair (E, b) satisfies condition (3.01). Let
E,/F be ramified quadratic and suppose for some b, in E, we have
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Trg,,pby, = Tty pb (mod PRU=D/21) Np b /Np,rb=1 (mod
PI"*D/2)) Then the pair (E,, b,) satisfies condition (3.01).

ProOF: We must show that ¢,(E/F)=c,(E,/F) (mod P;"~V/2]),
To begin with, we note that since 2(n + 1) > 3d(E/F) it follows that
—[(n—1)/2]>3d(E/F)—n. In addition, we have that

d(E/F)=min(2(vp(Trg b) +n), 20-(2) + 1),

d(E,/F)= min(Z(vF(TrEl/Fbl) +n),20,(2) + 1).

One may then deduce from the congruence Tr b, =Trg, b (mod
P "=D/21y that d(E,/F)=d(E/F).

Now since —[(n—1)/2]<1~-[(d(E/F)+1)/2], the congruence
c,(E/F)=c,(E,/F) (mod P;1""~Y/2]) is equivalent to the statement
that the restrictions of w; - and w; , to UL"*D/?) coincide. However
wg /plyjn+ o is determined by the data f(wg, ) =d(E/F), wi,r=1,
wg,p(1+x Trg, pb +x2NE/Fb)= 1 for x with 2pp(x)>2n—1+[(n+
1)/2]. Since

3(2n—1)+ [(” + 1)/2]) + VF(TrE,/Fb] - VF(TrE/Fb))
>d(E/F);
2n =1+ [(n+1)/2] + v Ne, b, —NE/Fb))>d(E/F),

we see that w; - satisfies the above data, whence our result.

Let E/F be quadratic ramified with 3d(E/F)<2(n+ 1) and let b be
an element of E with v;(b)=1—2n. Denote by W(E; b) the set of
representations W(#) where 6§ is a character of E* such that (B)=
Y(Trg, pb(B — 1)) for B in UpGn=dE/D*2/2] and 0(&p)wg, p(mp)=1
for some fixed prime element &, of F.

LEMMA 3.3: Let m=[3(2n—d(E/F)+2)]. Then W(E; b) consists of
(g —1)q™~" distinct representations if 3d(E/F)<2(n+1) and 3(q—
1)g™ ! distinct representations if 3d(E/F)=2(n+1).

ProoF: This follows from the fact that [Uy: U] =(q — 1)g™ ! together
with Corollary 1.4 and the fact that b=5b" (mod P2~ 4£/F)=my if and
only if —2n+d(E/F)>2—-d(E/F)—m, that is, if and only if
3d(E/F)>2(n+1).

LEMMA 3.4: Let S be the subgroup of F X F* consisting of pairs (x, y) with
x in Try P~ 1ED/ 2 and y in Ny, Ug 19E/F/2) Suppose E,, E, are
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ramified quadratic extensions of F, b, lies in E; and Trp ,pb,=Trg pb
(mod P;"=V/2)y N b,/Ny b =1 (mod P{"*V/21). Suppose further
that (Trg, ,pby, Ng ,pby) # (Trg, ,pby, Ni, ,pby) (mod S). Then W(E,, b))
and W(E,, b,) are disjoint sets.

PROOF: It was shown in Lemma 3.2 that d(E,/F)=d(E,/F)> 3(n+1)
and that if d(E,/F)=3(n+1) then f(w; w0y ),)<d(E,/F). It fol-
lows by Lemma 2.2 that W(E|, b,) and W(E,, b,) are disjoint unless
E,=E,.

Suppose now that E, = E,, that W(6,) lies in W(E, b,) and that
W(8,) is equivalent with W(8,). By Corollary 1.4, there exists an element
v in the galois group of E, /F such that

b, = by (mod pL="-14E/P/2)
which contradicts our hypothesis.

LEMMA 3.5: [P ("= D721 glin=D/21; §]= gll/2(dE/F)=D1 if 2(n + 1) >
3d(E/F); [PE[("_ /2] w UF[(n+ n/2]. S]= qul/Z(d(E/F)-l)] if2n+1)=
3d(E/F).

PrROOF: Straightforward.

PROOF OF PROPOSITION 3.1: Suppose that b is Weil-generic. Then b is
K (L") conjugate to

[O —detb_]
1 trh

and we have thus produced, by Lemmas 3.3, 3.4, 3.5, (¢ — 1)¢" ! distinct
irreducible Weil summands of Indg (1 1c1,(r)¥5 €ach having central
character which is trivial at &,. On the other hand, the total number of
such summands is

[UF[b_]Bn(Ln) : Bn(Ln)] = [(Jf[b—] : Uf'[lb_]] =(¢g—-1)q"" L
Since given any representation #(L"; y, ) we may find a character x of
F* such that f(x)=0 and #(L"; ¢, 8) ® x o det has a central character

trivial on &, we have shown that all representations «(L"; ¢,, 8) are
Weil representations.

Section 4

The purpose of this section is to prove the following proposition which
gives a simple characterization of the property of being Weil-generic.
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PROPOSITION 4.1: Fix n> 1 and let L" be the lattice flag described in §3.
Let b be b(L")-generic of level 1 —2n and set E = F(b). Then the following
are equivalent.

1. b is Weil-generic.

2. Either 2(n+ 1)>3d(E/F) or the polynomial X* — (tr b)X*+ det b
has a root in F.

3. There exists a ramified quadratic extension E/F with 3d(E/F)<2(n
+ 1) and an element b in E with Ni ,pb = det b and Trg,pb+cy (E/F)
= tr b (mod P (E/F)/21+1-m)

PROOF: 1= 2. Suppose that b is Weil-generic and that 2(n+ 1)<
3d(E/F). Pick b in E satisfying (3.01). We show first that 3d(E/F)=
2(n+1). Suppose that d(E/F) is odd. Then since, by assumption,
3d(E/F)<2(n+1) we must have 3d(E/F)<2(n+1). Now (see
Lemma 3.2), d(E/F)=min(2(vp(Trg,zb)+n), 2vp(2)+1) so that
2v,(2)+1=d(E/F)<2(n+1)/3 and also v (Trg,rb) > vp(2)+1—n.
By (3.01)—4,

ve(trb) > min(v,(2) +1—n, —2v.(2), — [(n—1)/2]).

However, from 2v.(2)+1<2(n+ 1)/3 we obtain that v(2)+1—n <
—2v.(2) while v.(2)+1—-—n< —[(n—1)/2] since n > d(E/F)=2v:(2)
+1. Thus »e(tr b)>».(2Q)+1—n whence d(E/F)=2v.(2Q)+1=
d(E/F). Therefore 3d(E/F) < 2(n + 1) which is false.

Now suppose that d(E/F) is even so that d(E/F)=2(vp(Trg,zb) +
n)<2vg(2). Then if 3d(E/F)<2(n+ 1), we would have ».(Trg, b)
=3d(E/F)—n<1-d(E/F)=vp(c,(E/F)). Since ;d(E/F)—n<
—[(n—1),/2] it would follow that ».(Trz,zb)=3d(E/F)—n whence
d(E/F)=d(E/F)< %(n+1). Thus we have shown that 3d(E/F)=
2(n + 1) and we note that d(E/F) is even.

Now by definition,

1=y(c,(E/F)(Ng,»(1+xb)—1))

= (g (E/F)(x Trg,pb + x*Ny b))

for x in Pg/2*"~1. Setting x=y Trg,zb/Ng, b and noting that
ve(Trg,pb)= 3d(E/F)—n while vy (N, ,rb)=1—2n we see that

\[/((Qp(E/F)(TI‘E/Fb)Z/NE/Fb)(y +y2)) =1

for y in O,. Since 4 has been picked so that ¢(y +y?)=1 for y in 0,
(p =2 here since d(E/F) is even) we see that c,(E/F)Try, -b)*/
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Ng,pb=1(mod Pp). By (3.01) it follows that X =Trg b satisfies the
congruence X* —tr b X?>+det b=0 (mod P?~2"). A Hensel’s lemma
argument now shows that the polynomial X> — tr 5X* + det b has a root
in F.

2=3. If 2(n+1)>3d(E/F) then v (cy(E/F))=1—d(E/F)>
[d(E/F)/2]+ 1 —n and so we may take E = E, b =b.

Now suppose that 2(n + 1)< 3d(E/F) and let s be a root in F of the
polynomial X?— (tr ) X?+ det b. Then since v.(tr b)>[(d(E/F)+
1)/2]—n while ».(det b)=1-2n, a standard argument shows that
vi(s)=43(1—2n)<vp(2) — n. It follows that the polynomial X* — sX +
det b is irreducible over F and that if E/F is a splitting field then
3d(E/F)=2(n+ 1). Let b be aroot in E of the polynomial X2 — sX + det
b. Then since d(E/F) is even we obtain, as above, that
c¢(E/F)(TrE/Fb)2/NE/Fb =1 (mod Pp) whence ¢, (E/F)=
Ny, pb/(Trg ,pb)? (mod Pp*(1/D( =27y Finally, Ny, b=det b while
Try b satisfies X* — Tr bX* + det b=0 so that N ,.b/(Trg,xb)* = tr
b —Trg ,pb. Combining this last equation with the congruence preceding
it and noting that 1 +3(1 —2n)=[d(E/F)/2]+ | — n yields our result.

3= 1. Set d =d(E/F) and suppose by induction that for 1 <j < k we
have picked quadratic extensions E;/F and elements b; in E; such that
d(E,/F)=d, Ng ,rb;= det b and TrE//Fbj +cy(E/F)=tr b (mod
P72y Set §=tr b, s, = Trg, ,pb,, A= det b, let a be an element of
Pl4/21=n+k and set s, = s, + a. Let E, be a splitting field of X*> — s, X + A
over F and pick a root, b,, of this polynomial in E,,.

Now since »p(s, —s;)>[d/2]—-n+ k and since d(E,/F)=
min(2(vg(s,) + n), 2vz(2)+ 1) while d(E,/F)= min2(vz(s,) + n),
2v(2)+1) it follows that d(E,/F)=d(E,/F)=d. Since vp(s,— s;) >
[d/2)—n+k while Ng ,zb, = Ng b, it follows that UfN Ny Ef =
Utn Ng ,rE; where | = max 2[(d + 1)/2] - 2k, [(d + 1)/2] and thus that
cy(Eo/F)=cy(E,/F) (mod P.").

Since 1 + 2k —2[(d+ 1)/2]>[d/2]—n+ k+ 1 when k > 1 while 1 —
[(d+1)/2]>[d/2]—n+k+1 when k<n—d we see that if we set
a=35—cy(E/F)—sy, byo1=0b,, Eiy =E, then the pair (b, E )
satisfies our inductive hypothesis whenever k < n — d. Finally since —[(n
—1)/2]+n—[(d)/2]<n—d+ 1 we see that we may find (b,, E,) as
above for k=[(n—1)/2]+n—[(d)/2]. The pair (b,, E,) then satisfies
(3.01) whence b is Weil-generic.

We may now state our main result.

THEOREM 4.2: Let & be an irreducible ramified supercuspidal representation
of Gl,(F) and let L be a lattice flag. Pick n, b, 8 as in Proposition 2.1 so
that m=a(L; ¢, ) ® x o det and set E = F(b). Then w is an exceptional
representation of Gl,(F) if and only if 2(n+1)<3d(E/F) and the
polynomial X* — (tr b) X? + det b is irreducible over F.
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PRrOOF: Propositions 3.1, 4.1.

We note, in conclusion, that we obtain as a consequence
COROLLARY 4.3: Gl,(F) has no exceptional representations unless p = 2.

Proor: If p =2, then we have d(E/F)=1 for all quadratic ramified
extensions E/F. Since n > 1 in all cases we have that 2(n + 1) > 3d(E/F).
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