@article{CM_1984__52_1_99_0, author = {Wilson, P. M. H.}, title = {Base curves of multicanonical systems on threefolds}, journal = {Compositio Mathematica}, pages = {99--113}, publisher = {Martinus Nijhoff Publishers}, volume = {52}, number = {1}, year = {1984}, mrnumber = {742700}, zbl = {0544.14025}, language = {en}, url = {http://archive.numdam.org/item/CM_1984__52_1_99_0/} }
Wilson, P. M. H. Base curves of multicanonical systems on threefolds. Compositio Mathematica, Tome 52 (1984) no. 1, pp. 99-113. http://archive.numdam.org/item/CM_1984__52_1_99_0/
[1] Introduction to Grothendieck Duality Theory. Lecture Notes in Mathematics 146. Berlin, Heidelberg, New York: Springer (1970). | MR | Zbl
and :[2] Ample subvarieties of algebraic varieties. Lecture Notes in Mathematics 156. Berlin, Heidelberg, New York: Springer (1977). | MR | Zbl
:[3] Algebraic Geometry. Graduate Texts in Mathematics 52. Berlin, Heidelberg, New York: Springer (1977). | MR | Zbl
:[4] A Generalization of Kodaira-Ramanujam's Vanishing Theorem: Math. Ann. 261 (1982) 43-46. | EuDML | MR | Zbl
:[5] Projective manifolds with ample tangent bundles. Ann. Math. 110 (1979) 593-606. | MR | Zbl
:[6] Threefolds whose canonical bundles are not numerically effective. Proc. Nat. Acad. Sci. USA 77 (1980) 3125-6. | MR | Zbl
:[7] Private communication.
:[8] Factorization of birational maps in dimension 3. Lecture given at the A.M.S. Summer Institute on Singularities, Arcata, 1981 (to appear). | MR | Zbl
:[9] Canonical threefolds. In: A. Beauville (ed.), Journées de Géométrie Algébrique, Juillet 1979, Sijthoff & Noordhoff (1980). | MR | Zbl
:[10] Minimal models of canonical threefolds. To appear in: S. Iitaka and H. Morikawa (eds.), Symposia in Math. 1, Kinokuniya and North-Holland (1982). | MR
:[11] Vanishing theorems. J. reine angew. Math. 335 (1982) 1-8. | MR | Zbl
:[12] On the canonical ring of algebraic varieties. Comp. Math. 43 (1981) 365-385. | Numdam | MR | Zbl
:[13] Resolution of the singularities of algebraic three dimensional varieties. Ann. Math. 45 (1944) 472-547. | Zbl
:[14] The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface. Ann. Math. 76 (1972) 560-615. | MR | Zbl
: