Removable singularities of Yang-Mills fields in R 3
Compositio Mathematica, Volume 53 (1984) no. 1, pp. 91-104.
@article{CM_1984__53_1_91_0,
     author = {Sibner, L. M.},
     title = {Removable singularities of {Yang-Mills} fields in $R^3$},
     journal = {Compositio Mathematica},
     pages = {91--104},
     publisher = {Martinus Nijhoff Publishers},
     volume = {53},
     number = {1},
     year = {1984},
     mrnumber = {762308},
     zbl = {0552.58037},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1984__53_1_91_0/}
}
TY  - JOUR
AU  - Sibner, L. M.
TI  - Removable singularities of Yang-Mills fields in $R^3$
JO  - Compositio Mathematica
PY  - 1984
SP  - 91
EP  - 104
VL  - 53
IS  - 1
PB  - Martinus Nijhoff Publishers
UR  - http://archive.numdam.org/item/CM_1984__53_1_91_0/
LA  - en
ID  - CM_1984__53_1_91_0
ER  - 
%0 Journal Article
%A Sibner, L. M.
%T Removable singularities of Yang-Mills fields in $R^3$
%J Compositio Mathematica
%D 1984
%P 91-104
%V 53
%N 1
%I Martinus Nijhoff Publishers
%U http://archive.numdam.org/item/CM_1984__53_1_91_0/
%G en
%F CM_1984__53_1_91_0
Sibner, L. M. Removable singularities of Yang-Mills fields in $R^3$. Compositio Mathematica, Volume 53 (1984) no. 1, pp. 91-104. http://archive.numdam.org/item/CM_1984__53_1_91_0/

[1] J.P. Bourguignon and H.B. Lawson: Stability and isolation phenomena for Yang-Mills fields. Comm. Math. Phys. 79 (1981) 189-203. | MR | Zbl

[2] S. Gallot and D. Meyer: Opérateur de courbure et laplacien des formes différentielles d'une variété Riemannienne. J. Math. Pures et Appl. 54 (1975) 259-284. | MR | Zbl

[3] B. Gidas: Euclidean Yang-Mills and related equations, Bifurcation Phenomena in Math. Phys. and Related Topics, 243-267, D. Reidel (1980). | MR

[4] A. Jaffe and C. Taubes: Vortices and Monopoles, Progress in Physics 2. Boston: Birkhäuser (1980). | MR | Zbl

[5] C.B. Morrey: Multiple integrals in the calculus of variations. New York: Springer (1966). | MR | Zbl

[6] T. Parker: Gauge theories on four dimensional manifolds. Ph. D. thesis, Stanford (1980).

[7] K. Uhlenbeck: Removable singularities in Yang-Mills fields. Comm. Math. Phys. 83 (1982) 11-29. | MR | Zbl

[8] K. Uhlenbeck: Connections with Lp bounds on curvature. Comm. Math. Phys. 83 (1982) 31-42. | MR | Zbl

[9] L.M. Sibner And R.J. Sibner: Removable singularities of coupled Yang-Mills fields in R3, Comm. Math. Phys. 93 (1984) 1-17. | MR | Zbl