@article{CM_1985__55_1_63_0, author = {Fauntleroy, Amassa}, title = {Geometric invariant theory for general algebraic groups}, journal = {Compositio Mathematica}, pages = {63--87}, publisher = {Martinus Nijhoff Publishers}, volume = {55}, number = {1}, year = {1985}, mrnumber = {791647}, zbl = {0577.14037}, language = {en}, url = {http://archive.numdam.org/item/CM_1985__55_1_63_0/} }
Fauntleroy, Amassa. Geometric invariant theory for general algebraic groups. Compositio Mathematica, Tome 55 (1985) no. 1, pp. 63-87. http://archive.numdam.org/item/CM_1985__55_1_63_0/
[1] Linear Algebraic Groups, Benjamin, New York (1969). | MR | Zbl
:[2] Elements de géometric algébrique, Inst. Hautes Etudes Sci. Publ. Math., No. 11.
and :[3] Algebraic and Algebro-Geometric Interpretations of Weitzenboch's Theorem, J. Algebra 62 (1980) 21-38. | Zbl
:[4] Categorical Quotients of Certain Algebraic Group Actions, Illinois J. Math. 27 (1983) 115-124. | MR | Zbl
:[5] Proper Ga-Actions, Duke J. Math. 43 (1976) 723-729. | MR | Zbl
and :[6] Quasi-affine surfaces with Ga-section, Proc. A.M.S. 68 (1978) 265-270. | MR | Zbl
:[7] Introduction to Algebraic Geometry, Springer-Verlag (New York) 1976. | MR
:[8] Algebraic spaces, Springer Lecture Notes in Math. No. 203 (1971). | MR | Zbl
:[9] Finite generation of class groups of rings of invariants, Proc. A.M.S. 60 (1976) 47-48. | MR | Zbl
:[10] Geometric Invariant Theory, Springer-Verlag, Berlin (1982). | MR | Zbl
:[11] Introduction to Moduli Problems and Orbit Spaces, Tata, New Delhi (1978). | MR
:[12] A Remark on Quotient Spaces, Ana. da Acad. Brasiliera de Ciencias 35 (1963) 25-28. | MR | Zbl
:[13] Nilpotent linear algebraic groups, Sem. Alg. Geom. Topol. 1962/1963, vol. 1, Ist. Naz. Alta. Mat., Ediz. Cremonese, Rome (1965), pp. 133-152. | MR
:[14] On, quotient varieties and affine embeddings of certain homogeneous spaces, T.A.M.S. 101 (1961) 211-221. | MR | Zbl
:[15] Lectures on unique factorization domains, Tata Inst., Bombay (1964). | MR | Zbl
:[16] Quotient spaces modulo reductive algebraic groups, Annals of Math. 95 (1972) 511-556. | MR | Zbl
:[17] Theory of moduli, Proc. Symp. in Pure Math. 29 Alg. Ceom. A.M.S.263 (1975) 263-304. | MR | Zbl
:[18] Moduli and global period period mapping of surfaces with K2 = pg = 1: A counterexample to the Global Torelli problems, Comp. Math. 41 (1980) 401-414. | EuDML | Numdam | MR | Zbl
:[19] Projective manifolds with ample tangent bundle, Annals Math. (1980) 593-606. | MR | Zbl
:[20] On a generalization of complete intersections, J. Math. Kyoto Univ. 15 (1975) 619-646. | MR | Zbl
: