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1. Introduction

l.l. Questions of linear algebra

Let x be a square matrix of order n with coefficients in a field K.
Assume that x is nilpotent, say with x r = 0. Since all eigenvalues of x are
zero, x has a Jordan canonical form y with n zeros on the main

diagonal. The matrices x and y are similar, so y = gxg-1 where g is
invertible. On the other hand, the matrix y is strictly upper triangular.
So, one might ask for a description of the set of all invertible matrices g
such that gxg-1 is strictly upper triangular, or for a classification of the
strictly upper triangular matrices up to conjugation by invertible upper
triangular matrices.
We consider the matrices of order n as endomorphisms of the vector

space K n . Let F* = ( Fr)r be the standard flag in K n; so Fr = 03A3ri=1Kei,
where el ... en is the standard basis of K n. A matrix x is strictly upper
triangular if and only if xFr c Fr-1 for every index r &#x3E; 0. Slightly more
general, let F* be an arbitrary flag in a vector space V with dim(V) = n.
So we have

with dim( £ ) = r. The corresponding nilalgebra is defined by

The above questions are almost equivalent to the following ones.
1. Given a nilpotent endomorphism x of V, describe the set Y( x ) of

all flags F* with x E N( F*).
2. Characterize all pairs (x, F*) with x E N(F*), up to automor-

phisms of V.
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1.2. Geometrical motivation

Let N be the set of the nilpotent endomorphisms of the vector space V.
Let Y be the set of all flags F* in V. Let X be the set of the pairs
(x, F*) with x E N(F*). If the base field K is algebraically closed, then
N is an irreducible algebraic variety with singularities, Y is a smooth
projective variety, and X is a vector bundle over Y, isomorphic to the
cotangent bundle T*Y. The projection qr : X - N given by z(x, F*) = x
is a desingularization of the nilpotent variety N. It is called the Springer
resolution. It is extensively studied in the literature, cf.

[2,3,8,9,10,11,12,14]. In particular, one is interested in the structure of the
fibers

cf. question 1 of 1.1. It is known that Y(x) is a connected algebraic
variety and that its irreducible components are parametrized by the
standard tableaux in the diagram of x, cf. [9,10,14]. We would like to
describe the intersections of the components of Y(x). This requires more
detailed information about the set X. In this paper, we propose a finite
classification of the elements of X, more or less in the direction of the
above question 2.

1.3. Systems of partitions. Occurrence

Every pair (x, F*) E X induces a family of nilpotent endomorphisms of
the subquotients Fq/Fp. Since a nilpotent endomorphism is characterized
by a partition, the pair (x, F*) induces a system of partitions
(03C4[p, q])pq. These systems form the subject of this paper.

If 03C4 = (03C4[p, q])p  q is a system of partitions, then we write X(03C4) to
denote the set of the pairs (x, F*) which have T as induced system of
partitions. If X(03C4) is non-empty, then we say that T occurs. The partition
À = 03C4[0, n ] is called the global partition of the system of partitions T. If x
is an endomorphism of V with partition À, then we write Y(x, T ) to
denote the set of the flags F* E Y( x ) such that ( x, F*) E X(03C4). It is clear
that Y( x, T ) is non-empty if and only if T occurs.

The question which systems T occur, is wild. In 5.7, 9.3, 9.4, 9.6, we
give examples to show that occurrence may depend on the choice of the
base field K. On the other hand, we have obtained certain conditions,
which are independent of the base field, and which are either necessary,
or sufficient for occurrence.

1.4. Acceptable systems of partitions. Typrices

The information contained in a system of partitions T is reorganized in
the form of a strict upper triangular matrix A = (apq), with integer
coefficients. If the system of partitions occurs, then the matrix A consists
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only of zeros and ones. Therefore, we define a typrix to be a strict upper
triangular matrix consisting of zeros and ones. We say that the system of
partitions T is acceptable, if the corresponding matrix A is a typrix.

Conversely, a typrix A is called acceptable, if there is a (necessarily
unique) system of partitions T which induces the matrix A. In this way,
we obtain a bijective correspondence between the acceptable systems of
partitions and the acceptable typrices. A typrix A is said to occur, it it is
acceptable and if the corresponding system of partitions occurs. Now we
also have a bijective correspondence between the occurring systems of
partitions and the occurring typrices.

Let T be an occurring system of partitions, say with (x, F*) E X(03C4)
and with a typrix A. The typrix A should not be thought of as

representing a linear transformation. On an intuitive level, however, the
features of the endomorphism x E N( F*) are reflected brightly in the
typrix, cf. 3.4 up to 3.7. Moreover, the typrix A is more easily memorized
than the system of partitions T.

1.5. Sufficient conditions

A typrix A is called elementary, cf. 4.4, if it corresponds to an equiv-
alence relation pn the indices 1... n. The construction of 4.3 shows that

every elementary typrix occurs. This is independent of the base field K.
In 1975, N. Spaltenstein determined the irreducible components of the

variety Y(x), in the case that K is algebraically closed, cf. [9,10].
Roughly speaking, the components are indexed by the set St(03BB) of the
(standard) tableaux T in the partition À of x. In section 5, we construct
an injective mapping y which associates to a tableau T E St(03BB) a system
of partitions T = -y(T) such that the set Y(x, T ) is open and dense in the
"Spaltenstein component" Y(X)T of Y(x). Therefore, a system of parti-
tions T will be called generic, if T = 03B3(T) for some tableau T. Clearly, if
the field K is algebraically closed. all generic systems of partitions occur.
In fact, it suffices that the field K is infinite.

1.6. Necessary conditions for occurrence

In theorem 6.6, we obtain combinatorial conditions which are necessary
for the occurrence of a given system of partitions T. The conditions are
expressed in matrices R and S, closely related to the typrix A of T. The
theorem is based on the following result.

PROPOSITION (6.2): Let Q and R be subspaces of V. Let V1 c ... c Vm be
a nested sequence of subspaces of v. Then we have

where |W| = dim(W).
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The conditions described in theorem 6.6 can be verified by a com-
puter. In this way, we generated lists of possibly occurring typrices of
order n  7. The methods and the results are discussed briefly in section
7.

l. 7. One special component

For the investigation of at least some high dimensional cases, we have to
make extra assumptions. In section 8, we therefore consider one special
component of the variety Y(x). As Spaltenstein has observed, the num-
ber of moduli of Y(x) may grow quadratically with n. In section 9, the
investigation is further specialized. There we show that the question
which typrices occur, is equivalent to the question which systems of
polynomial equations with integer coefficients have solutions in a given
field. This proves that the question of occurrence is wild.

Recollections

Inspired by Spaltenstein’s paper [9], 1 obtained the genericity theorem
(5.5) in June 1976. My interest in the matter was kept alive by questions
of De Concini (in Hamburg, November 1980) and Bürgstein (in Ob-
erwolfach, March 1982). It was not before September 1982, however, that
1 could make real progress. Then the representation by means of typrices
was discovered and a computer program was conceived.

2. Systems of partitions

2.1. CONVENTIONS: The set of the positive integers is denoted by N. We
write [ p ... q ] to denote the set of the integers p, p + 1,..., q. The
number of elements of a set S is denoted by ~S. The symbol K stands
for an arbitrary field and V is a vector space over K with dim(V) = n.

2.2. Partitions, cf. [7J, p. 1

A partition 03BB* = (03BB1,..., 03BBr,...) is a sequence of non-negative integers,
in decreasing order, containing only finitely many non-zero terms,
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We do not distinguish between two such sequences which differ only by a
string of zeros at the end. The sum of the terms is called the order or
weight of the partition, denoted by

We define the corresponding diagram 03BB to be the subset of N2 consisting
of the pairs (i, j) with j  À,. So À is a finite subset of order ~03BB = |03BB|.
The conjugate sequence 03BB* = (03BB1, À,, ... ) is defined by

(= 03BB’J, cf. [7], p. 2). So we have

Usually we identify the partition À* and the diagram À.

2.3. The partition of a nilpotent endomorphism

Let x be a nilpotent endomorphism of the vector space V. Since all

eigenvalues of x are zero, x has a Jordan canonical form which is a
matrix with zeros on the main diagaonal. See for example diagram 1. Let
03BB1,..., 03BBr be the sizes of the Jordan blocks of this matrix, in decreasing
order. Then 03BB* is a partition of order n. The corresponding diagram À is
a convenient index set for a basis of the vector space V. In fact, it is easy
to construct a basis e(i, j), (i, j)~ À, such that

It follows that the conjugate sequence 03BB* satisfies

So the partition À is completely determined by the endomorphism x, and
we may write À = 03BB(x). The partition 03BB(x) characterizes the similarity
class of x. In fact, two nilpotent endomorphisms x and y of V are
similar if and only if 03BB(x)=03BB(y).

2.4. Invariant subspaces

Let x be a nilpotent endomorphism of V. Let W be an invariant

subspace of V. The induced endomorphisms of W and V /W are denoted
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by x : W and x : V /W, respectively. These endomorphisms are nilpotent.
So we have induced partitions, say 03BC = 03BB(x : W ) and v = 03BB (x : V/W).
The following lemma is easy and well known, cf. [7], p. 91.

LEMMA: 03BC~03BB and v~03BB and |03BC| + |v| = |03BB|.

REMARK: The assertion 03BC ~ 03BB is equivalent with ~i:03BCi  03BBl, and also
with ~i: 03BCi  N.

2.5. Systems of partitions

Let (x, F*) E X, cf. 1.2. So F* is a flag in V and x is an endomorphism
of V with xFr c Fr - 1 for every index r. We associate to the pair (x, F*)
the discrete invariant T = T(x, F*), which is the family of the partitions

It follows with 2.4 that we have

LEMMA: (a) ï[0, n]=À(x) and |03C4[p, q]| = q - p. (b) If 1  p  q  n,
then T[ p, q] c T[ p - 1, q] and T[ p - 1, q - 1] ~ 03C4[p - 1, q].

DEFINITION: A family of partitions 03C4[p, q]p  q with the properties of this
lemma is called a system of partitions of order n with global partition
03BB(x). If T is a system of partitions, we write Y(x, T ) to denote the set of
the flags F* E Y(x) with T( x, F*) = T. The system T is said to occur if
Y( x, T ) is non-empty. If the field K is algebraically closed, the system T
is said to be generic if Y( x, T ) is dense in an irreducible component of
the variety Y( x ).

REMARK: Occurrence and genericity are independent of the choice of x
in its similarity class. It turns out that genericity of T is independent of
the field K, cf. 5.6 below.

2.6. How to represent a system of partitions?

Let T = T [ p, q ]p  q be an arbitrary system of partitions of order n. If n
is not too small, then T is an insurveyable heap of information. So we
have to reorganize the information without disturbing the main structural
features. To this end we introduce four upper triangular matrices of order
n, each containing the same information.

The matrices R = (rpq) and S = (Spq) are derived from the pair of
inclusions of lemma 2.5(b). In both cases, the complement of the subset
in the containing diagram consists of one element. So, if we compare the
conjugate sequences 03C4[p, q]* for the respective values of p and q, then
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we get unique numbers rpq and spq such that

It follows that rpp = Sp p 
= 1. If p &#x3E; q then we define rpq = spq 

= 0. Now

R = (rpq) and S = (spq) are upper triangular matrices of order n. Both R
and S determine the system of partitions T. In fact, if 0  p  q  n, then

In order to clarify the relationship between R and S, we introduce the
upper triangular matrix T = (tpq) of order n, given by

If 1  p  q  n, then

It follows that R and S are equal to the matrix products R = TE and
S = ET, where E = (epq) is the fixed upper triangular matrix with epp = 1
and ep,p+1 = -1 and epq = 0 if q ~ p, p + 1. In order to recover the

symmetry, we introduce a fourth matrix

where I is the identity matrix of order n. Clearly, A is a strictly upper
triangular matrix. If p  q, then

The matrices R and S are recovered as follows. If p  q then

The matrices R, S, T, A are called the characteristic matrices of the

system of partitions T. We use the matrix A to represent the information
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contained in T, rather than the matrices R, S, or T. This preference is
justified by the remarkable fact, that if the system T occurs, then the
matrix A consists only of zeros and ones, cf. 3.1(c) below.

3. Typrices

3.1. PROPOSITION: Let a pair (x, F*) E X have the system of partitions
03C4 = 03C4(x, F*). Let R, S, T, A be the characteristic matrices of T. Let

1  p  q  n. Then we have
(a) rpq = min{i|x1Fq~x1Fq-1+Fp-1}.
(b) spq = min{i|Fp ~x1Fq + Fp-1}.
(c) aP q = 0 or aP q 

= 1.

PROOF: (a) By 2.6 we have

Using 2.3, we obtain

(b) Similarly, we have

(c) We may assume p  q. So apq = r - t where r = rpq and t 
= 

rp+1,q.
By part (a) we have
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By (a) this implies that t  r. Since xFp c Fp-1, we have

By (a) this implies that r  t + 1. This proves that r equals t or t + 1, so
that a equals 0 or 1.

3.2. DEFINITION: A strictly upper triangular matrix only consisting of
zeros and onces is called a typrix. A typrix A is said to be acceptable, if it
is the characteristic A-matrix of a (necessarily unique) system of parti-
tions T. The typrix is said to occur (to be generic), if it is acceptable and
the corresponding system of partitions occurs (is generic). Conversely, a
system of partitions T is said to be acceptable, if its characteristic
A-matrix is a typrix.

REMARKS: By 3.1(c), every occurring system of partitions is acceptable.
The acceptable systems of partitions are in bijective correspondence with
the acceptable typrices. Similar statements hold for the occurring ones,
and for the generic ones. The word typrix is a neologism, it is a

contraction of the words type and matrix.

EXAMPLE: There are eight typrices of order three. There are six systems
of partitions of order three. Five of the systems are acceptable. The only
unacceptable one is the system T with 03C4[0, 3]* = (2, 1) and 03C4[0, 2]* =
T[1, 3]* = (1, 1). In fact, the characteristic A-matrix of T has the coeffi-
cient a13 = -1.

3.3. Typrices need not be self representing

Let x be a strictly upper triangular matrix with entries in the field K.
The matrix x represents a linear transformation x of the space K n which
leaves the standard flag F* of K n invariant, cf. 1.1. So we have an

occurring system of partitions T = T(x, F*) with a characteristic typrix
A. Now A is a strictly upper triangular matrix of zeros and ones, which
looks more or less the same as the original matrix x. Usually, however, A
is of a different type, in the sense that 03C4 ~ 03C4(A, F*). A typrix A is said
to be self representing, if A is the characteristic typrix of the system of
partitions T( A, F*).

EXAMPLE: Consider the typrices of order four:
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The typrix A is not acceptable. A’ is the characteristic typrix of the
system of partitions T(A, F*) induced by the matrix A. The system of
partitions T( A’, F*) has the characteristic typrix A". The typrix A" is
self representing.

3.4. Duality

Let T be a system of partitions of order n with characteristic matrices R,
S, T, A. We define the dual system of partitions T’ by

Let R’, S’, T’, A’ be the characteristic matrices of T’. One easily verifies
that

where f is the reflection in the skew diagonal which transforms a square
matrix M = (mij) of order n into the matrix

If the system of partitions T occurs, then the dual system r’ also occurs.
In fact, assume that T = T(x, F*). Let x’ be the induced endomorphism
of the dual vector space h’ of V. Let Fi be the dual flag, which is given
by

Then F’ is an x’-invariant flag with system of partitions T’ = T(X’, F’).
In particular, f(A) is the characteristic typrix.

3.5. A ncestry relations

If T is a system of partitions of order n, then we define a lefthand
subsystem le (03C4) and a righthand subsystem ri(03C4). These are the systems of
partitions of order n - 1 given by

If T has the characteristic matrices R, S, T, A, then le ( T ) and ri(03C4) have
the characteristic matrices
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where le and ri also denote the corresponding stripping operators on
matrices: the operator le strips the last row and the last column, whereas
ri strips the first row and the first column.

If the system of partitions T occurs, then the subsystems le(03C4) and
ri(03C4) also occur. In fact, assume that 03C4 = 03C4(x, F*). Then le(03C4) =
T(x’, F’) where F’ is the flag (Fl)l  n - 1 in Fn-1 and x’ is the restriction
x : Fn-1. Similarly, ri(03C4) = 03C4(x", F") where x" is the induced endomor-
phism of VIF, and F" = Fl+1/F1. The pairs (x’, F’) and (x", F") are
called the ancestors of (x, F*).

3.6. The remaining bit

If we want to determine the characteristic typrix A of a pair (x, F*),
then the minors le(A) and ri ( A ) are determined by the ancestors of
(x, F*). So the only new information is contained in the top righthand
entry aln. The following result may be useful.

COROLLARY: In the situation of 3.1, we have aln = 1 if and only if there
exists a number m with xmV = FI ~ xmFn-1.

PROOF: We have a1n = 1 if and only if rl n &#x3E; r2n. Now 3.1(a) reads

Since xlFn- 1 ~ xlV, the assertion follows.

3. 7. The extreme cases

The analysis of the following extreme cases may be left to the reader.

COROLLARY: Assume (x, F*) E X has characteristic typrix A.
(a) A = 0 ~ x = 0.
(b) We have a,j = 1 for all pairs i  j, if and only if Fl = xn-1V for all

indices i.

3.8. Acceptability of a given typrix

Let A = (apq) be a typrix of order n. Let R = (rpq) and S = (spq) be
defined as follows, cf. 2.6. If p &#x3E; q then rp q 

= 

spq = 0. If p  q then 
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LEMMA: The typrix A is acceptable if and only if it satisfies the following
three conditions:

(a) The minors le (A) and ri(A) are acceptable.
(b) If r1n  2 then ~{j|r1j = r1n - 1}  ~{j|r1j = r}.
(C) alun = 0 or rln = SIn. 

PROOF: Assume that A is acceptable. Let T be the corresponding system
of partitions. By 3.5, the minors le(A) and ri(A) are the characteristic
typrices of the subsystems le(03C4) and rie T), so they are acceptable.
Condition (b) follows from 2.6. In fact, if r = r1n  2, then

In order to prove (c), we assume that r1n ~ S1 n . We put

By 2.6 we have

Since r1n ~ Sln, we have p ~ v. It follows that

03BBB03BC = vB03BE.

This implies r1n = r2n, so that a1n = 0, proving (c).
Conversely, assume that the conditions (a), (b), (c) are satisfied. We

have to construct a system of partitions T. We define a family of
sequences 03C4[p, q]* with 0  p  q  n, by

Since the typrices le(A) and ri(A) are acceptable, there are systems of
partitions T’ and T" of order n - 1 with characteristic typrices le ( A ) and
ri ( A). So by 2.6 we have

If r  2 and r =1= rln, then
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If r = r1n  2, then condition (b) reads

So the sequence 03C4[0, n]* is non-increasing. Now it is clear that there is a
corresponding partition 03C4[0, n or order n with

In order to prove that T is a system of partitions, it remains to show that

Assume that this inclusion is false. Then there is a number t with

Since we have

it follows from the definition of T that t = r2n’ and that

By application of 2.6 on the acceptable system le(03C4), the left hand

equality implies that t ~ S1,n-1. The righthând equality implies that
t =1= rl n . So we have s1,n-1 ~ r2, n and r2,n ~ rl ," , or equivalently

contradicting condition (c). So the family T is a system of partitions. It is
clear that R = (rpq) is the characteristic R-matrix of T. Therefore A is the
characteristic typrix of T. This proves that A is acceptable.

Tableaux and semitableaux

4.1. DEFINITION: By 2.2, a diagram 03BB is a finite subset of N2 satisfying
the condition

We define a semidiagram a to be a finite subset of N2 satisfying
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We define a semitableau (tableau) of order n to be an injective mapping
S : [1...n] ~ N2 such that for every number m  n the partial image
S[l ... m is a semidiagram (diagram).

REMARK: Here we abandon the conventions of [7]. We think of a

semidiagram as a wall of boxes in the positive quadrant. A semitableau is
a way of building the wall. If T is a tableau, then the family of diagrams
(T[l... m])m is a standard tableau in the sense of [7], p. 5.

4.2. Straightening of a semitableau

If a is a semidiagram, there is a unique diagram À = 03C0(03C3) which can be
obtained from a by permuting the columns of N2 (i.e. by permutation of
the first coordinates of N2 ). The diagram À may be characterized by its
conjugate sequence:

If S is a semitableau of order n, there is a unique tableau T = qr(S) of
order n which satisfies

The tableau T is called the straightening of S, see diagram 2.

4.3. The typrix of a semitableau

Let a be a semidiagram of order n. We use a as an index set of a basis
e(i, j), (i, j) E 0, of the vector space V. Since a is a semidiagram, we
have an endomorphism x of V satisfying

Clearly, x is nilpotent and its diagram is equal to 03C0(03C3).
Now assume that a is the image Im(S) of a semitableau S of order n.
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Since the partial images S [1... m are semidiagrams, the subspaces

form an x-invariant flag in the vector space V. We shall determine the
corresponding system of partitions T and the characteristic matrices
R = (rpq) and A = (apq). (We do not need the characteristic matrices S
and T.) The conjugate sequences 03C4[p, q]* are given by

It follows that 03C4[p, q]r is the number of columns of the semitableau S
which contain at least r boxes S(t) with p  t  q. It follows that

where S1(i) denotes the first coordinate of the point S(i) in N 2. Since
apq = rpq - rp+1,q, we get

Belonging to the same column of S is an equivalence relation on the set
[1... n ]. So the typrix A is elementary in the sense of the following
definition.

4.4. DEFINITION: A typrix A = ( a pq ) is called elementary if there is an

equivalence relation - on [1... n ] such that

Conversely, given an equivalence relation - on the set [1... n], it is easy
to construct a semitableau S such that the columns of S’ are the

equivalence classes of -. This proves:

LEMMA: If A is an elementary typrix, then A occurs.

4.5. Duality of tableaux

We define a partial order  on the set N2 by

(i, j)  (p, q) ~ i  p &#x26;j  q.

So a diagram À may be characterized as a finite subset of N2 such that if
x ~ 03BB and y  x then y~03BB.
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PROPOSITION: Let T be a tableau of order n.
(a) There are unique tableaux U = dT and V = 03B4 T of order n - 1 with

U(i) = T(i) and V(i)  T( i + 1) for all numbers i  n - 1.

(b) We have Im(03B4T) c Im(T) and 8 d T = d 8 T.
(c) There is a unique tableau W = D T of order n such that

Im(dmW) = Im(03B4mT) for all m E [0... n ].

REMARKS: If À is a fixed diagram of order n, then D induces an
involution of the set St(03BB) of the tableaux T with Im(T) = 03BB. It follows
from theorem 5.5 below, that D is equal to the involution 03C0’o03C0-1 of
[10], p. 92. In diagram 3, we give an example of a tableau T of order 7,
with repeated application of 8, and with the resulting dual tableau DT.

PROOF: (a) It is trivial that U has to be the restriction T|[1...n - 1]. The
unique existene of V is proved by induction. If n = 1, then it is trivial.
So, by induction we may assume the unique existence of a tableau V of
order n - 1 with V(i)T(i+1) for all numbers i  n - 2. Since the

image T[1...n - 1] is a diagram, we have

In order to extend V to a tableau of order n - 1, we have to prescribe the
point V(n - 1)  T(n). Since V must be injective and Im(T) is a di-

agram, this point must be chosen in the difference set

This set contains two points: T( n ) and x, say. If x  T( n ), then since
V[l ... n - 11 must be a diagram, we have to prescribe V(n - 1) = x. If
x e T( n ), then we have to chose V( n - 1) = T( n ), in view of the defining
condition. In both cases the resulting map V is a tableau and it satisfies
the requirements.

(b) Both assertions are easy.
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(c) It suffices to note that the sets Im(03B4mT) are diagrams of order
n - m which satisfy

(d) The equality dDT = D03B4T is trivial. The equality DdT = 03B4DT is

1 proved by induction. In fact, since 8T is a tableau of smaller order, the
induction yields that

Using the equalities dD = D8 and d8 = 8d, we obtain

So the restrictions of DdT and 8DT on the set [1... n - 2] are equal. By
the definition of 8, it remains to prove that

Put x = DT(n). We distinguish two cases:

(i) Assume x =1= T(n). Since x E Im(T), it follows that x E Im(dT).
Since x ~ Im(d03B4T), it follows that x = DdT( n - 1).

(ii) Assume x = T( n ). Put y = 8T( n - 1). Then x ~ y and hence y E
T[l ... n - llB&#x26;T[l ... n - 2].

It follows that

This concludes the proof of DdT = BDT.
The equality D2T = T is also proved by induction. In fact, induction

yields D2dT = dT. By the other two equalities, it follows that dD2T = dT.
So the restrictions of D 2 T and T on the set [1... n - 1] are equal. Since
the images of D2T and T are also equal, it follows that D2T = T.

4.6. COROLLARY: Let T be a tableau of order n. Put ( r, s) = DdT( n - 1).
Then DT(n) E {(r, s), (r + 1, s), (r, s + 1)}.

PROOF: By 4.5(d) we have

Assume (r, s ) ~ DT( n ). Both points belong to the set difference

Im(T)BIm(d8T).
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It follows that

So the righthand set is a diagram. Since Im(T) is also a diagram and
since ( r, s )  DT(n), it follows that

4.7. Duality in terms of straightening

PROPOSITION: Let T be a tableau of order n. Put ( p, q) = DT(n).
(a) Let S be a semitableau with 7T(S) = T and Im(S) = Im(T). Then

S(l) = (t, 1) with t  p.
(b) If 1  t  p, then there is a semitableau S with 03C0(S) = T and

Im(S) = Im(T) and S(l) = (t, 1).

PROOF: If n = 1, both assertions are trivial. In both cases we proceed by
induction. We put

So by 4.6 we have

(a) Now let the semitableau S be given. The relations 03C0(S) = T and
Im(5’) = Im( T ) remain undisturbed if we permute columns of S of equal
length. So we may assume that the column of S(1) = (t, 1) is as much to
the right as possible. Putting À = Im(T), we have À, t &#x3E; 03BBt+1. We fix the
column of S(1) and permute the other columns of S of equal length, in
such a way that the point S(n) comes as much to the right as possible.

First assume that 03BBB{S(n)} is a diagram. Then it is equal to the
diagram Im(dT ). So by induction we have t  r  p, as required.
Now assume that 03BBB{S(n)} is not a diagram. Then the above

permutations have established that S(n)=(t-1, 03BBt) and that À t - 1 = 03BBt.
Let S’ be the semitableau of order n - 1, obtained from S by interchang-
ing the columns with the numbers t - 1 and t, and then restricting to
[1... n - 1]. Since Im( S’) is a diagram and hence equal to Im(dT), and
since S’(1) = ( t - 1, 1), the induçtion hypothesis implies t - 1  r  p. So
( p, q) is a point of the diagram À with p  t - 1. The set difference
03BBB{(p, q)} is equal to the diagram Im(03B4T). Since À t 1 = 03BBt, it follows
that p &#x3E;- t.

(b) Conversely, let 1  t  p be given. We have to construct S. Put
t’ = min( r, t ).
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By induction we have got a semitableau S’of order n - 1 with 03C0(S’) = dT
and Im(S’) = Im(dT ) and S’(1) = (t’, 1). Let S" be the unique semi-
tableau of order n such that S’ is the restriction of S" and that

Im(S") = 03BB. Then we have 03C0(S") = T. So if t’ = t, then it suffices to put
S = S".

It remains to consider the case that t’ ~ t. Then we have t = p and
r’ = t - 1 and ( p, q ) = ( r + 1, s ). Since the set

is a diagram, it follows that the columns of S" with the numbers t’and t
have equal length q = s. Let S be the semitableau obtained from S" by
interchanging these two columns. Then S satisfies the requirements.

5. Generic systems of partitions

5.1. Until 5.6 we assume that the field K is algebraically closed. Recall
that the set Y of the flags F* in the vector space V is a projective variety,
cf. [1] 10.3. Let x be a fixed nilpotent endomorphism of V, say with
partition 03BB = 03BB(x). The set Y(x) of the flags F* such that x ~ N( F*), is
a closed subvariety of Y. Recall that if T is a system of partitions with
global partition À, then Y( x, T ) is the set of the flags F* E Y(x) such
that

Let T be a tableau of order n with Im(T) = 03BB. We define Y(x)T to be
the set of the flags F* E Y(x) such that

LEMMA : The subsets Y(x, T ) and Y(x)T are localled closed.

PROOF : We only consider the first case. Put

If F* E Y(x ), then the condition F* E Y(x, T ) is equivalent to

Conditions like
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are closed conditions. Therefore Y( x, T ) is locally closed. The other case
is similar.

5.2. THEOREM (Spaltenstein, cf. [10] 115.21): Let T be a tableau with

Im(T) = 03BB. Then Y(x)T is an irreducible variety of dimension 03A31 203BBi(03BBi - 1),
dense in some irreducible component of Y(x). Every irreducible component
of Y(x) is the closure of a unique set Y( x ) T.

REMARK: This version is dual to the original construction, which used the
set of the flags F* such that

5.3. PROPOSITION: Let T be a tableau with Im(T) = À. Put DT(n) =
( p, q ). Then there is a flag F* E Y(X) T with FI et. x q V.

PROOF: We use the Jordan basis of V introduced in 2.3. It consists of
vectors e(i, j), (i,j)~03BB, such that xe(i,j)= e(i,j - 1) if j &#x3E; 2, and
that xe(i, 1)=0. By proposition 4.7 there is a semitableau S with

03C0(S) = T and Im(S) = 03BB and S(1) = (p, 1). Using this semitableau we
define a flag F* by

Since S is a semitableau, we have x E N( F*) and

This proves that F* E Y(X)T. Since FI = Ke( p, 1) and ( p, q + 1) e À, it
is clear that F1 ~ xqV.

5.4. PROPOSITION: Let T be a tableau with Im(T ) = À. Let S be a tableau
of order n - 1. Put

The set U(S) is open and dense in Y(x)r if and only if S = 8 T.

PROOF: Since Y(x)r is irreducible and the disjoint union of the locally
closed subsets U( S ), there is a unique tableau S of order n - 1 such that
U( S ) is open and dense in Y(x)T. It remains to prove that S = 8 T. This
is done by induction.

Let P*(V) be the projective space of the n - 1 dimensional subspaces
of V. Let f:Y(x)T~P*(V) be the projection given by f(F*) = Fn-1.
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Fix a flag F*~ U( S ). The fiber f-1f(F*) may be identified with the
irreducible variety Y’( x’) dT of flags in the space Fn-1, invariant under
the restriction x’=(x:Fn-1). So by induction f-1f(F*) contains

U’(03B4dT) as an open and dense subset. Since U( S ) is open, it follows that
U(S) intersects U’(03B4dT). It follows that

dS = 03B4dT = d03B4T.

It remains to prove that Im(S) = Im(03B4T). Put 03BC = Im(S) and v = Im(03B4T).
Assume 03BC ~ P. Put 03BE = Im(03B4dT). Then 03BE = JL ~ v and À = 03BC U P. We have
two différent points

Since ( u, v)  T( n ), we have ( p, q ) =1= T(n) and hence v ~ Im( dT ). Since
e c Im( dT ) c À, it follows that it = Im( dT ).

The set of the flags F* with FI et xqV is open in the flag variety Y. By
proposition 5.3, this set intersects Y(x)T. Since U( S ) is dense in Y(x)T,
there is a flag F* E U( S ) with FI et xqV. This flag satisfies

Since F1 ~ xqV, we have

Since ( u, v) ~03BBB03BC, it follows that v  q. The set IL is a diagram which
contains ( p, q ). Therefore v  q. It follows that

This implies xq-1Fn-1 = xq-1V, and hence

contradicting the fact that

This proves that p = v.
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5.5. THEOREM (genericity) : Let T be a tableau with Im(T) = 03BB. There is a
unique system of partitions T such that Y(x, T ) is open and dense in Y(x)T.
This system T is determined by

PROOF: The variety Y(x)T is irreducible and a disjoint union of its

locally closed subsets Y(x, T). This implies the first assertion. It remains
to identify T. Since Y(x, T ) is contained in Y(x)T, we have

Since Y( x, T ) intersects the set U(03B4T) of 5.4, we have

We proceed by induction. Let P(V) be the projective space consisting of
the one dimensional subspaces of V. Let f : U(03B4T) ~ P(V) be the

projection given by f(F*) = F1. The fiber f-1f(F*) may be identified
with the irreducible variety Y’(x’)03B4T of flags in the space V / F1 which are
invariant under the endomorphism x’ = (x : V/F1) and have tableau 8 T.
So, by induction f-1f(F*) contains the open and dense subset Y’(x’, T’)
where T’ is the system of partitions of order n - 1 determined by

We may assume that F* E Y’( x’, T’). Let Fi be the induced flag with
F,’ = Fl+1/F1. For every index p  1, we have

This concludes the proof.

5.6. From now, the field K is again arbitrary. In fact, the following
definition is independent of the field.

DEFINITION: Let T be a tableau of order n. The associated system of

partitions T = y(T ) is defined by

Independently of theorem 5.5, it is clear that 03B3(T) is a system of

partitions of order n. By 2.5, 5.2, 5.5, we have
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COROLLARY: Let K be algebraically closed. A system of partitions T of
order n is generic if and only if there is a (necessarily unique) tableau T
with T = Y(T ).

REMARK: The theory can be extended in such a way that the field K is
only supposed to be infinite. This follows from the fact that Y(x)T
contains a dense open subset which is K-isomorphic to an affine space,
cf. [9].

5. 7. The Bürgstein family

Let T be the tableau of order 6, given in diagram 4. Put À = Im( T ), so
that 03BB* = (4, 2). One verifies that the system of partitions T = 03B3(T) has
the typrix A which is displayed in diagram 4. Let be a vector space
with dim( ) = 6. Let x be a nilpotent endomorphism of V with partition
À. It turns out that the set Y(x, T ) consists of the flags F* such that
F1 = Im(x3) and F3 = x-1F1 and Fs = x-2FI and that F2 and xF4 are
two different subspaces of F3 which are unequal both to Ker(x) and
Im(x2). These four two-dimensional subspaces of F3 all contain Fl . So
they induce four different points on the projective line P(F3/F1), and
hence a projective cross ratio t E KB{0, 1).

If K is infinite, this implies that Y(x, T) contains infinitely may
orbits with respect to the action of the centralizer Z( x ), the group of the
automorphisms g of V with gxg-’ = x. This infinite family of orbits was
discovered by H. Bürgstein. He proved that T is the only system of
partitions of order n  6 such that the corresponding set Y( x, T ) has
infinitely many orbits. On the other hand, it follows that Y( x, T ) is

empty if the field K has only two elements. A related example was given
by R. Steinberg in [14] 5.7.

6. Necessary conditions

6.1. In this section we shall derive conditions which are necessary for the
occurrence of a given typrix. The conditions are sharper than the

acceptability introduced in 3.2. For some months, our investigations
where stimulated by the belief that the conditions might be sufficient.
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EXAMPLE: Consider the typrices

All four typrices Ao, Al, Bo, B, are acceptable. However, if (x, F*) is a
pair in X with characteristic typrix Au, then it turns out that x 2 ~ 0 and
that therefore a = 1. If the pair has characteristic typrix Bb, then x 2 = 0
and b = 0. So, the typrices A o and BI do not occur. The proof of this
non-occurrence will be given in a highly generalized form. It gives
information concerning the ranks of the powers of the induced endomor-
phisms (x : FIFP). The main tool is a dimension formula.

6.2. The dimension formula

Since the formulas tend to be large, we introduce some special notations.
The dimension of a vector space W is denoted by |W| = dim( W ). The
rank of an endomorphism x of W is denoted by Ixl or |x:W|. The
addition of subspaces is given higher priority than the formation of
residue classes. So we write P + Q/R + S instead of ( P + Q )/(R + S ).

PROPOSITION: Let Q and R be subspaces of V. Let V1 c ... C hm be a
nested sequence of subspaces of V. Then we have

PROOF: If m = 0, the assertion is trivial. If m = 1, then it reads

This formula follows from the surjectivity of the canonical map

We proceed by induction. Put U = V/V1 and U = Vi+1/V1 and Q’ =
R + VI/VI and R’ = Q + V1/V1. By induction, we have

or equivalently
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or equivalently

So, it remains to prove that

Again, this follows from the surjectivity of the above map cp.

6.3. COROLLARY: If moreover m is even, then

PROOF: The righthand inequality follows from 6.2 and the fact that
03A3ml=1(-1)i=0. We obtain the lefthand inequality by interchanging Q
and R.

6.4. REMARK: Although it has nothing to do with the case, we like to note
another version. The Grassmann set of all linear subspaces of V can be
equipped with a discrete metric d defined by

If m is odd, the formula of 6.2 is equivalent with

(*)

The case m = 1 is the triangle inequality. The case m = 3, however, is not
a consequence of the triangle inequality. In fact, if the edges in the graph
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of diagram 5 all have equal length, then the corresponding discrete metric
space with five points does not satisfy formula ( * ).

6.5. PROPOSITION: Let x and y be endomorphisms of the space V. Let

V1 c V2 c ... C v2m be a nested sequence of subspace of V, which are
invariant under both x and y. Then we have

(a) 03A32mi=1(-1)i(|x: J1;1-ly: V/Vi|-|Vl|)  Ixy: V|.
(b) If R is a subspace of V invariant under both x and y, then

|x : V| - |x : R| - |V/R|  03A32mi=1(-1)i(|xy : Vi| - |y : Vl + R/R|)  |x : R|.

PROOF: (a) Put Q = Ker(x) and R = Im(y). Then

Now the formula follows from corollary 6.3 together with 03A32ml=1(-1)l = 0.
(b) Again we apply 6.3. We use Q = Ker( x ) and the nested sequence

of subspaces U, c ... c U2m given by Ui = y(Vl). The formula follows
from

6.6. THEOREM: Let A be an occurring typrix of order n with R-matrix (rij)
and S-matrix (slj), cf. 3.8. Let a, b~N. Put c = a + b.

(a) We have ~{j|rlj &#x3E; a &#x26; sjn &#x3E; b}  ~{j|r1j &#x3E; c}.
(b) If 1  p  n, then

PROOF: Let A be the characteristic typrix of a pair (x, F*) in X. Let T
be the corresponding system of partitions. In view of 2.3, we define, for
every triple of numbers t, p, q with t  1 and 0  p  q  n, the number
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By 2.6 we have

The formulas are proved by application of proposition 6.5 on the

endomorphisms xa and x h of Tl and a sequence of subspaces (Vl)i given
by Vi = Fq(i) where q(1)=q1,...,q(2m)=q2m is an arbitrary subse-
quence of 1,..., n of even length. We have xaxb = xc. Now formula
6.5(a) yields

Let J be the alternating union of segments

Now the alternating sums can be worked out as follows.

In all five summations, the index i runs from 1 to 2m. In a remarkable

way, the above inequality reduces to

By a suitable choice of the sequence (q¡), the set J can be made equal to
an arbitrary subset of the segment [1 ... n]. In particular, we can accom-
plish

In this case the inequality reduces to

This is formula (a).
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In order to prove the inequalities (bl) and (b3), we apply proposition
6.5(b) on the subspace R = Fp-1. For convenience, we define rk ( t, p, q )
= 0 if p &#x3E; q. Then we get

The alternating sums are worked out in the same way as above. Again, J
is the alternating union of segments. If p &#x3E; q then rpq = 0. Let us define

The above inequality reduces to

The set J may represent an arbitrary subset of [1... n]. So we may
substitute J = J1 and also J = J2, defined by

These substitutions yield

So, the set differences satisfy

We have
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This proves the inequalities (b3) and (bl). The inequalities (b4) and (b2)
follow from (b3) and (bl) by duality, cf. 3.4.

6.7. EXAMPLES: The typrix Ao of example 6.1 is rejected by condition
6.6(a) with a = b = 1. The typrix BI of 6.1 is rejected by 6.6(bl) with
a = b = 1 and p = 3. The conditions (b3) and (b4) of 6.6 only reject
typrices of order n &#x3E; 7. For example, the typrix C is rejected by (b3) with
a = b = 1 and p=5.

7. Generating possibly occurring typrices

7.1. Motivation

When we had obtained a weak version of theorem 6.6(a), we felt the need
for a list of the typrices which could occur according to the known
conditions. Since the human mind is inadequate to verify conditions like
6.6, we used a computer. The first result was a list which contained the

typrix B1 of example 6.1. This typrix was easily rejected. We tried to
generalize the argument and obtained the present form of theorem 6.6(a)
and a weak version of 6.6(bl). The adapted program generated a list of
26 possibly occurring typrices of order 6. The typrix A was on this list,
but it behaved suspiciously in the process of generating the list of typrices
of order 7. An ad-hoc argument to reject A was found and generalized.
In this way we obtained 6.5(b) and 6.6(b). In fact, the typrix A is rejected
by 6.6(bl) with a = b = 1 and p = 3.

So, previous lists of possibly occurring typrices have already proved
fruitful. This seems to justify the inclusion in this paper of parts of our
present list. It may be of equal importance, however, to give an indica-
tion of our methods to generate the list.
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7.2. We start with a definition. A typrix A of order n is said to be very
acceptable, if it is acceptable and if every subtyprix A’ = (a’lj) of order
k  n given by

where 0  m  n - k, satisfies the inequalities of 6.6(a) and (b). If A is a
very acceptable typrix, then clearly the minors le ( A ) and ri(A) are also
very acceptable, see 3.8. By 3.2, 3.5, 6.6, every occurring typrix is very
acceptable. In 9.3 below, we shall give very acceptable typrices A and B
of order 21, such that A occurs over a field K if and only if char( K ) = 2,
and B occurs over K if and only if char(K) ~ 2.

7.3. Fusion of typrices

In order to get a list of the very acceptable typrices of order n, we may
assume that the list for the order n - 1 is known already. So we assume
that x[1],..., x[N] are the very acceptable typrices of order n - 1. If A is
a very acceptable typrix of order n, then its main minors le ( A ) and ri(A)
are very acceptable typrices of order n - 1, so that le(A) = x[i] and
ri(A) = x[j] for certain indices i, j E [1... N]. Moreover, the minors of
x[i] and x [ j on the intersection in A are equal. That is

(*)

Conversely, we obtain all very acceptable typrices of order n, if we fuse
together all pairs x[i] and x[j] such that (*) holds, add an additional 0
or 1 in the top righthand corner, cf. 3.6, and verify whether the resulting
typrix satisfies the conditions 3.8(b, c) and 6.6.

For the algorithm to be effective, we need bounds on the positive
integers a and b of 6.6. Therefore we note the following facts.

(a) Condition 6.6(a) is only non-trivial if a + b  n. In fact, if the
lefthand side of 6.6(a) is non-zero, then there is an index j such that
rij &#x3E; a and Sin &#x3E; b. It follows that j &#x3E; a and n - j  b, and hence
n &#x3E; a + b.

(b) We may suppose that the main minors le(A) and ri(A) are

already very acceptable. So condition (bl) need only be verified if rpn  b
and c  rl n , or equivalently if rpn  b  rl n - a.

(c) Similarly, condition (b3) need only be verified if b  rpn and
a  r1n  c, or equivalently if

(d) The conditions (b2) and (b4) are treated in the same way.



TABLE 1.

Counting the very acceptable typrices.

* Two typrices do not occur.



TABLE 2.

The occurring typrices.
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7.4. Discussion of results

The results of the computer program are summarized in two tables. Table
1 gives the number N of the very acceptable typrices with a given global
partition of order n where 2  n  7. The number Ng is the correspond-
ing number of generic typrices, Ne is the number of elementary ones, and

Nge is the number of typrices which are both generic and elementary. All
very acceptable typrices of order n  6 occur over the field Q (H.
Bürgstein). Recent results, cf. [4], show that there are two very acceptable
typrices of order 7 which do not occur over any field, and that the other
1417 typrices of order 7 occur over .

In Table 2, we give the occurring typrices of order n  5. We only
show the upper triangular part of the typrix. Consecutive typrices are
separated by semicolons, commas or spaces. If they belong to different
partitions, they are separated by a semicolon and the new partition is
written under the typrix. 

’

Typrices belonging to different components Y(x)T are separated by
commas. Whether a typrix is generic or elementary is indicated by a letter
"g " or "e " under its lowest entry.

8. A component with many moduli

8.1. In this section we investigate high dimensional cases of a special
type. So, the number n = dim(V) may be large. We assume that x is a

nilpotent endomorphism of V such that the diagram 03BB=03BB(x) is a

rectangle, say

It follows that n = u·v. If 0  i  v, then we put Q, = Ker(xl). One
verifies that Qi = Im(xv-l) and that dim(Qi) = u · i. In the flag variety Y
we consider the subset C of the flags F* with

If F* E C and u · i  p  u · (i + 1), then Fp c Qi+1, so that

This proves that C is contained in the subvariety Y(x).

LEMMA: If the base field K is algebraically closed, then the set C is an
irreducible component of Y(x).

PROOF: It is clear that C is a closed subset of Y( x ). Since C is

isomorphic to a product of flag varieties, the set C is irreducible. Let T
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be the tableau shown in diagram 6. We claim that Y(x)T c C. In fact, let
F* E Y(x)T. Then we have

It follows that xiFu., = 0, so that Fu . , c Ql . Since both spaces have the
same dimension, it follows that Fu . , = 6r This proves that F* E C. Since
Y(x)T is dense in an irreducible component of Y(x), cf. 5.2, this proves
that C is an irreducible component of Y(x).

8.2. Analysis of the set C

If F* is an arbitrary flag in C, then we define

It is clear that for every index i the sequence El,* = (Ei,d)d is a flag in
the vector space

Conversely, if E0,*,..., Ev-1,* is a v-tuple of flags in Q, then there is a
unique corresponding flag F* E C, determined by

This defines a bijective correspondence between the set C and the set
Y(Q)’ of the v-tuples of flags in the space Q.

8.3. The relative position of flags in Q

Recall that 6=61 is a vector space with dim(Q) = u. The relative
position of two flags F* and G * in the space Q is characterized by the
so-called position matrix r = (03B3pq) given by
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The following lemma is a direct consequence of the Bruhat decomposi-
tion, cf. [13], p. 225, ex. 7.

LEMMA (a) There is a permutation a of [1... u] and a basis e1,..., eu of Q
such that Fp is spanned by e1... ep and that Gp is spanned by eol ... e,p .

(b) The matrix r is the permutation matrix of a, that is 03B3pq 
= 8p,oq. In

particular, a is unique.

Let F* E C. We determine the system of partitions T = T( x, F*) in terms
of the relative positions of the corresponding flags E,, * in the space
Q = Ker(x). The result is illustrated by diagram 7. Let d, e E [0... u and
let 0  i  j  v. Putting

we have

If e &#x3E; 0, then we have

where h is 0 or 1, and h = 1 if and only if
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Therefore, if d, e E [1... u], then

By lemma 8.3(c), it follows that the u X u submatrix

is equal to the position matrix of the pair of flags E;, * and Ej,* in the
space Q. This holds for i  j. Since the endomorphism x restricts to zero
on the subquotient Fu·i/Fu·(i-1), the u X u submatrix

of the typrix A is the zero matrix. So, the typrix A is a block matrix with
blocks 0393i,j, where i, j E [0 ... v - 1]. Each block 0393i,j is a u X u matrix. If
i  j, then 0393i,j is the position matrix of the pair of flags Ei,* and Ej,* in
the space Q. If i  j, then Fij is the zero block.

8.5. Permutation typrices

The above analysis suggests the following definition.

DEFINITION: A permutation typrix of type (u, v) is a typrix of order
n = u.v, which is a block matrix (0393i,j)i,j~[0...v-1] such that each block
fi,) is a u X u matrix which is zero if i  j, and which is a permutation
matrix if i  j.

PROPOSITION: (a) If F* E C, then the characteristic typrix of F* is a

permutation typrix of type ( u, v).
(b) Let A be a permutation typrix of type (u, v). Then A is acceptable,

say with system of partitions T. The flags F* E Y( x, T ) are the flags
F,, EE C such that the corresponding flags Eo, *,..., Ev-1, * in the space Q
have pairwise the position matrices 0393i,j which form the non-zero blocks of A.

PROOF : (a) This is proyed in 8.4.
(b) Let A have the blocks 0393i,j. If i  j, assume that Fi,j corresponds to

the permutation 03C3i,j of the segment [1... u]. If i = j, let ai,j be the

identity permutation. One verifies that A is the characteristic typrix of
the system of partitions T which is given as follows. If 0  i  j  v and
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d, e ~ [0...u], then

where

This proves that A is acceptable. It remains to show that Y( x, T ) is
contained in the sec C. Let F* E Y(x, T ). We have

It follows that xJF,,.j = 0, so that Fu.) c Qj. Since both spaces have the
same dimension, we get Fuo) = Qj. This proves that F* E C.

REMARK: As the referee has remarked, this proposition allows to con-
struct in a simple way acceptable typrices A which do not occur, e.g.

03931,2 = 03932,3 = I and 03931,3 ~ I. Here the non-occurrence does not require
explicit calculations (as in 6.1) or the somewhat mysterious theorem 6.6.

8.6. The generic case

Assume that the field K is algebraically closed. The generic relative
position of a pair of flags in the space Q is the opposite position. The
corresponding permutation a of the segment [1... u is given by 03C3(d) = u
+ 1 - d. The position matrix B has ones on the skew diagonal. So, the
generic typrix A in the component C of Y(x) is the block matrix with
blocks B above the main diagonal and all other blocks zero. Alterna-
tively, this could have been derived from 5.5 and the tableau T of the
proof of lemma 8.1.
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Let T be the corresponding generic system of partitions. The variety
Y(x, T ) is isomorphic to the open subvariety U of Y(Q)’ of the v-tuples
of flags Ei,*, i~[0...v- 1], in Q which are pairwise opposite. The
action of the centralizer

on the component C corresponds to the action of the group GL(Q) on
the product variety Y(Q)V. Now assume that v &#x3E; 3. Let U’ be the open
subvariety of U of the v-tuples (El,*)l 1 such that the one-dimensional

subspace E2,1 is in general position with respect to the opposite flags
Eo, * and E1, *. If (Ei,*)l is element of U’, then up to a common scalar,
there is a unique basis e1,...,eu of Q such that the spaces Eo,d are
spanned by the vectors el, ... , ed, that the spaces El,d are spanned by
eu+ 1-d, ... , eu, and that E2,1 is spanned by the vector el + ... + eu. The
flag variety Y(Q) has dimension 1 2u(u - 1). The variety of the flags with
a given one-dimensional part has dimension -!(u - 1)( u - 2). Therefore,
the orbit space U’/GL(Q) has dimension

Let n be fixed and divisible by 4. Then this dimension becomes maximal
if we choose u = n/4 and hence v = 4. Then we have

In particular, this shows, as already observed by Spaltenstein, that the
dimension of the orbit space may grow with a rate proportional to n2. In
our example, the characteristic typrix is the block matrix

9. A component equivalent to plane projective geometry

9.1. Since plane projective geometry is better understood than the geome-
try of flags in an arbitrary space Q, we shall extend the analysis of
section 8 in the special case u = 3. So we have dim(Q) = 3. Every flag
E;, * in Q can be written
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where dim( P, ) = 1 and dim( L, ) = 2 and Pi c Ll. We may consider P, as a
point in the projective plane P(Q) and L, as a line in P(Q). So, the flag
El,* is identified with a pair ql = ( P,, L,) consisting of a point incident
with a line. In Table 3, we give the six incidence relations between such
pairs which correspond to the six permutations a of the set [1 ... 3]. We
represent the permutation a by the sequence of images [ Ql 03C32 a3]. The
six position matrices get the names a,..., f. The incidence relations
between the pairs q0,...,qv-1 in the projective plane P(Q) can be
represented by a graph A with the nodes 0, 1,...,v-1, and with the
edges as described in the last column of Table 3 below.

Conversely, let A be a graph with nodes 0, 1,..., v - 1, and edges of
the types given in the table. We define a drawing of A to be a sequence of
pairs q, = ( P;, Li) with i = 0,..., v-1, in the projective plane P(Q) such
that for every pair of indices ij the pairs ql and qj have the incidence
relation described in the corresponding row of the table. We identify
P(Q) with the projective plane P2(K). We write Dr(A/K) to denote the
set of the drawings of A in P2(K). We write A(A) to denote the

permutation typrix with the block minors 0393l,j given by the table. By
proposition 8.5, the typrix A(039B) is acceptable. Let 03C4(039B) be the corre-
sponding system of partitions. By 8.5, we have a bijection

TAB LE 3.

Dictionary between permutation, typrix, geometry and graph.
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9.2. Triangles

For an arbitrary field K, the projective plane P2(K) contains some
triangle, see diagram 8. This triangle gives rise to a cyclic graph and a
permutation typrix as shown in diagram 8. So, in particular, this typrix
occurs. This is not surprising. In fact, the typrix is elementary, cf. 4.4.

However, if we start with the triangular graph of diagram 9, we find
no corresponding drawing with points and lines in P2(K). So, the

corresponding typrix A does not occur. This fact is also not new. In fact,
the minor le(ri(A)) of A of order 7 was already rejected in example 6.7.

9.3. The Fano configuration

The Fano configuration 73 is the configuration of the seven points and
the seven lines of the projective plane P2(F2) over the field with two
elements, cf. [5] 14.1 ex. 2. This configuration can be realized in the plane
P2(K) if and only if the base field K has characteristic two. So the
corresponding typrix A occurs if and only if char(K) = 2. Since this
typrix is of order 21, we only give its block structure. The given typrix
corresponds to the cyclic numbering of the vertices of the graph, see

Diagram 8. A triangle with graph and permutation typrix.

Diagram 9. Non-occurrence: a "false triangle".



130

diagram 10.

Now, let us omit the edge in the graph between the vertices 6 and 0.
Then the typrix A is changed into the typrix B where the top righthand
block 03930,6 = e is replaced by the block ro,6 = f. The drawing is modified
such that the point P6 is no longer on the line Lo. It is clear that the

typrix B occurs if and only if char(K) ~ 2. The typrices A and B are
both very acceptable, since each occurs over some field.

9.4. Complex occurrence

The configuration 83 consists of 8 lines and 8 points, each point on three
lines, each line through three points, see the graph of diagram 11. It
occurs in the projective plane P2(K) if and only if the equation t3 = 1
has a solution t ~ 1 in K. In diagram 11, we also give the block structure
of the corresponding typrix of order 24. So this typrix occurs over the
complex numbers and it does not occur over the reals. Let T be the

corresponding system of partitions. If the field K is algebraically closed
and of characteristic 3, then the variety Y(x,03C4) has two connected
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Diagram 11. The configuration 83.

components. These components are irreducible. They correspond to the
two different solutions of the equation t2 + t + 1 = 0.

9.5. Plane configurations

In [6], we defined a configuration C to be a triple (Cl, C2, Co) 5uch that
Cl and C2 are disjoint finite sets and that Co is a subset of the Cartesian
product Cl X C2. Let P*2(K) denote the set of the lines in the plane
P2(K). A drawing S of a configuration C was defined to be a pair of
injective maps

such that, for every pair (a, b) ~ CI X C2, we have (a, b) ~ Co if and

only if the point S1(a) is incident with the line S2 ( b ). The set of

drawings S of a configuration C in P2(K) is denoted by Dr(C, K ).
If C is a configuration, an element a E CI is called lonely if a~pr1(C0)

where prl : Cl X C2 - CI is the projection mapping. Similarly, b E C2 is

TABLE 4.
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called lonely if b e pr2(C0). For our purposes, lonely elements are

harmless. We just omit them. Then we have:

LEMMA: Let C be a configuration without lonely elements. There is a graph
039B in the sense of 9.1 such that

and that the number of vertices of A does not exceed EI(CI) + O( C2).

PROOF: Since C has no lonely elements, we may choose a subset J of Co
such that CI = pr1(J) and C2 = pr2 (J). We may assume that J consists
of v flags with v  ~(C1)+ ~(C2). Write J = {f0,..., fv-1} with fl =
(ai, bl). Let A be :he graph with the nodes 0,..., v - 1. If i  j, let the
node i be connected with the node j through an edge of the type
determined by table 4. The bijective correspondence between the draw-
ings S of C and the drawings (qi)l of A is determined by the equations

REntARK: Conversely, it is clear that for every graph A, there is a

configuration C with Dr(C, K) ~ Dr(039B/K).

9.6. Essentially, all varieties occur

By 9.5, the situation of 9.1 is reduced to our previous paper [6]. To avoid
complicating details as well as unnecessary restrictions, we assume the
base field K to be infinite and we define the concept of variety to mean
" scheme of finite type over K ". Now, our sets Y(x, T ) may be consid-
ered as varieties. Recall that a morphism of varieties f : Y ~ X is called
free, if it is surjective and if every pair of points YI and y2 in Y has an
open neighbourhood V in Y with an open immersion j : V - X X An
such that the restriction of f to V is equal to the composition of j with
the projection of X X A n onto the first factor, cf. [6] 4.1. It follows from
[6] 6.1 and 8.3 that we have

THEOREM: Let X be a variety isomorphic to a closed subset of Am or Pm’
which is defined by polynomial equations with integer coefficients. Then, for
a sufficiently large number v, there exists a graph 039B with v vertices and
with a free morphism of varieties’ Y(x, 03C4(039B)) ~ X.

COROLLARY (cf. [6] 8.2): Let K be a number field. There is a graph 039B such

that for every field extension L of Q, we have that the typrix A(039B) occurs
over L if and only if L contains a subfield isomorphic to K.
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