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In this paper, for a fixed projective variety Y, we will say that a property
holds for sufficiently ample analytic line bundles L - Y if there exists an
ample bundle L0 ~ Y so that the property holds for all L on Y with
L &#x3E; Lo, i.e. L Q5 Lo 1 ample. We will denote this by saying the property
holds for L » 0.
We will prove two theorems:

THEOREM 0.1: Let Y be a smooth complete algebraic variety of dimension
&#x3E; 2. Then for L - Y a sufficient ample line bundle, the Local Torelli

Theorem is true for any smooth Z in the linear systems L 1.

REMARK: What we will actually show is that the map

is injective, where n = dim Z; this is one piece of the derivative of the
period map. Note that we are considering all first order deformations of
Z and not just those arising by varying Z to first order in the linear

system 1 L 1.

THEOREM 0.3: Let Y be a smooth complete algebraic variety of dimension
&#x3E; 2, L - Y a sufficiently ample line bundle. Assume Ky is very ample.
Let

Then the period map has degree 1 on its domain in

* Research partially supported by NSF Grant MCS 82-00924.
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What we will actually show is stronger than (0.3). To state exactly
what is proved, we make the following definition:

DEFINITION 0.5: Let V1,..., Vk be vector spaces. We say that two

elements

are GL-equivalent if they lie in the same orbit of GL( V1) X ... X GL(Tk).

Let

be the image of H ° ( Y, L). The highest piece of the derivative of the
period map P * ,2 may be regarded as an element

Let

Then what will actually be shown is that

If 1 K, is very ample, then for L a sufficiently ample line
bundle, the map

P(H0(Y, L»)ns/G

is injective.
These theorems settle a conjecture in [C-G-Gr-H]; the method of

proof of (0.1) is essentially a resurgence of an idea that occurs there. The
proof of (0.3) is inspired by Donagi’s proof of a similar result for

hypersurfaces in projective space [D].
The author is grateful to Ron Donagi and Phillip Griffiths for their

help and encouragement.

z1. Hodge theory on a hypersurface of high degree

Given a short exact sequence of vector spaces
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there is a long exact sequence

for any k &#x3E; 1. If Y is a compact complex manifold of dimension m and
Z c Y is a smooth submanifold of dimension n with normal bundle Nz
in Y, we have a short exact sequence

Thus we have, for any p &#x3E; 1, long exact sequences

The exact sequences (1.3) turn out to be quite useful in computations
whenever we have an explicit form for Nz, most notably in the case of
complete intersections. To use these sequences, we need:

LEMMA 1.4: Let

be an exact sequence of vector bundles on a compact complex manifold Z.
Then there is a spectral sequence abutting to zero with

PROOF: Consider the bigraded complex

where A0,q denotes W’ (0, q )-forms, with maps
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There is then (see [G-H]) a pair of spectral sequences E;,q, "E;,q having
the same abutment, with

The rows of j9 are exact, so

Thus the spectral sequence ’Erp,q abuts to zero, and hence so does " E;,q.
Furthermore,

This completes the proof of the lemma. D

LEMMA 1.5: Let Y be a compact Kiihler manifold and Z c Y a complex
submanifold of dimension n. If

then

and there is a short exact sequence

PROOF: We apply Lemma 1.4 to the exact sequence (1.3), taking p = p.
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We obtain a spectral sequence which abuts to zero whose El term looks
as follows:

The only non-zero differentials emerging from the position (0, n ) are d1,
dp-1, and dp. The only non-zero differentials whose target is the position
( p + 1, n - p) are dl and dp. We thus obtain maps

where the second map is an isomorphism because the spectral sequence
abuts to zero. Using Serre Duality, (1.9) gives (1.8).

There are no non-zero differentials other than d1 coming into the
positions ( p, q ) and ( p + 1, q ) if q  n - p. This shows (1.7) and com-
pletes the proof of Lemma 1.5. D

A result similar to this is:

LEMMA 1.10: Let Y be a compact Kiihler manifold and Z c Y a complex
submanifold of dimension n. If

th en

PROOF: We take the exact sequence (1.3) for p = n - 1 and tensor with
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KZ 1. This yields the exact sequence

No apply Lemma 1.4 and observe that

Now (1.12) follows by Serre Duality, completing the proof of Lemma
1.10.

LEMMA 1.14: Let Y be a smooth ( n + l)-fold, and L ~ Y a sufficiently
ample analytic line bundle. If Z is a smooth reduced element of the linear
system IL 1, then for n &#x3E; 1,

and there is a short exact sequence

Furthermore, there is a commutative diagram

where the horizontal maps are induced by (1.15) and (1.16), the vertical

map on the left is the dual of the highest piece

of the derivative of the period map, and the vertical map on the right is
multiplication.
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PROOF: From the restriction sequence

and the isomorphism of bundles

we have a long exact sequence

By the Kodaira Vanishing Theorem, we conclude that (1.6) holds when L
is sufficiently ample.

By the adjunction formula

and (1.19) we have a long exact sequence

so (1.11) holds when L is sufficiently ample. Thus (1.15) and (1.16)
follow from Lemmas (1.5) and (1.10). Since multiplication by HO(Z, Kz)
commutes with all the differentials of the spectral sequence, we conclude
that (1.17) commutes, proving the lemma.

LEMMA 1.24: Let Y be a smooth (n + l)-fold with n  1 and L - Y a
sufficiently ample analytic line bundle. Then the Local Torelli Theorem
holds for any smooth, reduced Z ~ IL if the multiplication map

is surjective.

PROOF : To show that the map

is injective, it is equivalent to show that the dual map
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is surjective. By Lemma 1.14, it is enough to show that

is surjective. From the restriction sequence (1.19), we have the long exact
sequence

By the Kodaira Vanishing Theorem,

for L sufficiently ample, and thus the map

is surjective. The lemma follows.

LEMMA 1.28: Let Y be a smooth (n + l)-fold, El, E2 analytic vector
bundles over Y. For L a sufficiently ample line bundle on Y, the multiplica-
tion map

is surjective when a  1 and b  1.

PROOF *: Let à be the diagonal on Y X Y, and 03C01, ir2 the canonical

projections. We then have a commutative diagram

* This argument was suggested by Ron Donagi and replaces an earlier, more complicated
proof.
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From the restriction sequence

we see that to prove the surjectivity of (1.29), it suffices to prove

Since 03C01*L ~ 03C02*L is sufficiently ample on Y X Y if L is sufficiently
ample on Y, (1.31) holds when a  1 and b &#x3E; 1. 0

We conclude this section by noting that Theorem 0.1 is a direct

consequence of Lemmas (1.24) and (1.28). The need to take L » 0 arose
in satisfying (1.6), (1.11), and (1.25). In explicit situations, e.g. when Y is
a complete intersection in PN, these may be verified directly to yield
many known results.

§2. A global Torelli theorem

Let Y be a smooth algebraic variety of dimension n + 1 and L - Y a
sufficiently ample line bundle. Let

Z smooth and reduced.

We have

and let T be the image of the Kodaira-Spencer map

The first derivative of the period map at Z has as its leading piece

which we may alternatively regard as an element

Using the notations introduced in the introduction, in order to show that
P has degree one on
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it is sufficient to show that

Let 03A3Y denote the first prolongation bundle (see [A-C-G-H]) of L; it

sits in the exact sequence

with extension class

We can differentiate s to obtain

For any coherent analytic sheaf F ~ Y, we obtain a map

and we define the pseudo-Jacobian system

to be the image of the map (2.10). If dim Y  2, then for L sufficiently
ample, from the exact sequence

and the Kodaira Vanishing Theorem we have that

From the exact sequence

we conclude from (2.3) that

for L sufficiently ample.
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It is useful to have the following Duality Theorem or Generalized
Macaulay’s Theorem:

THEOREM 2.15: For Y a smooth (n + l)-fold, E ~ Y a fixed analytic
vector bundle, and L - Y a sufficiently ample line bundle,

and the map

is a perfect pairing provided

If only

then the pairing (2.17) has no left kernel.

PROOF OF 2.15: Using

we may construct the Koszul complex

Tensoring (2.20) with E ~ La and applying Lemma 1.4, we obtain a
spectral sequence abutting to zero. For L sufficiently ample, using the
hypothesis (2.18), we get that
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and thus

When E = 1, a = 0, this gives (2.16). Moreover, because multiplication
with H0(Y, E* ~ K2Y ~ L(n+2-a)) gives a map of the entire spectral
sequence, we conclude that (2.17) gives the duality. The case where we
have only the hypothesis (2.19) is similar. This proves (2.15).

We next generalize Donagi ’s Symmetrizer Lemma with the following
two results:

THEOREM 2.21 (Generalized Symmetrizer Lemma): Let Y be a smooth
n + 1 fold, L ~ Y an analytic line bundle, M - Y an analytic line bundle
with 1 MI base-point free, and E ~ Y an analytic vector bundle. Then for L
sufficiently ample, the Koszul complex

is exact as far as written above, provided that

is injective.

THEOREM 2.24: For L sufficiently ample, the Koszul complex

is exact as for as written, and
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is exact as far as written provided that |KY| is base-point free and
dim ~Kr (Y)  2.

Proof of Theorems (2.21) and (2.24): Using the Generalized Macaulay’s
Theorem (2.15) and its proof, we have for L sufficiently ample that the
sequence (2.22) is dual to

The sequence

is exact by considering the Koszul complex

and applying Lemma 1.4 and the Kodaira Vanishing Theorem. Likewise,

by a similar argument, while

by the dual of (2.23).
We are now done by
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LEMMA 2.29: Let V be a vector space, S(V) the symmetric algebra on V,
and A = ~q~Z Aq ~ B = ~q~ZBq graded S(V)-modules. The Koszul com-
plex

is exact as far as written provided that

is exact as far as written and

PROOF OF (2.29): As G is surjective, so is G. If a E ker G, then choosing
lx E V ~ Bq+1 representing a,

By (2.32), we may modify à to x representing a so that

So

for some Ï3 E 2V ~ Bq, and then

where 03B2 is the projection of a to A2VO (Bq/Aq). D

We have now proved (2.21). To prove (2.24), we will prove first the
exactness of the sequence

which is stronger than showing exactness for (2.25). Using the dualities of
§1, and the fact H°(Y, 03A9nY) ~ HO(Z, on 0 OZ) if dim Y  2 if L » 0
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and the generalized Macauley’s Theorem, we may dualize the above
sequence to

and we now proceed analogously to the preceding case, using Lemma 1.8,
the Kodaira Vanishing Theorem, and Lemma 2.29. The one additional
fact we require is that the sequence

is exact as far as written for L sufficiently ample. This follows from
Lemma 2.47, which we have put at the end of this section.

The dual of (2.26) is

and again we are done provided that

is injective. Applying Lemma 1.8 to the Koszul complex
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we conclude that the injectivity of (2.33) is equivalent to proving

is exact at the middle term. From the exact sequence

we have an exact sequence

and the last map is an isomorphism by the Strong Lefschetz Theorem, so

and we are now reduced to showing

is exact at the middle term. However, for dim (p,,  2 this is true by the

Kp,1 Theorem of [G]. 0

We have the following corollary of Theorem 2.21:

COROLLARY 2.34: If 1 K y is base-point free and Y is of general type, then
for any m  1 the Koszul complex 

is exact as far as written for k sufficiently large if dim ~KY(Y)  2.

PROOF: Using (2.21), we need only show that hypothesis (2.23) holds in
this case, i.e. that
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is injective. As seen above, this is equivalent to the sequence

being exact at the middle term. For m = 1, we have already proved this.
As is well known,

H0(Y, 8y) = 0 if Y is of general type

and thus

and

We are done in case m  3, while for m = 2 we are reduced to the
exactness of

at the middle term, and this follows from the fact that Koszul map
2V ~ 3V ~ V* is injective for any vector space. D

We are now ready to begin proving Theorem (0.3). The image of the
derivative of the period map gives us the GL-equivalence class of the map

"L

We require

LEMMA 2.38 : The right kernel of (2.37) is the image of H0(Y, 03A9nY) for L
sufficiently ample.

PROOF: We know by Hodge theory that the image of HO(y, 03A9nY) in

H0(Z, KZ) is invariant as we deform Z on Y. It remains to show that
the map
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is injective. A fortiori, it would be enough to show that

is injective. By the results of §1, for L sufficiently ample this dualizes to
the (quotiented) multiplication map

which we must show is surjective. It suffices to show that

This follows from Lemma 1.28, for L sufficiently ample. 0

Thus, from (2.37), we can construct the map

From this, we can construct the second map in the sequence (2.25), and
thus can reconstruct the GL-equivalence class of the map

From (2.39), we can construct the second map in the sequence (2.26), and
thus can reconstruct the vector space

and the GL-equivalence class of the map

For any m0 chosen in advance, we can choose L sufficiently ample so
that we can recover inductively using Corollary (2.24) the GL-equivalence
classes of the maps
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for all m  mo.
However,

I f KY is ample, we conclude that for some m1,

and the ml may be chosen independent of L. We now have the maps

for m0  m  m1 + 1, where we can make m0 as large as we like at the
expense of our choice of how ample L must be. For

a linear subspace with base locus B, we have by making L sufficiently
ample that

Thus we can detect from the map (2.42) which W’s have a base locus,
and thus can determine the Chow form of ~KY(Y). Since ~KY(Y) = Y by
hypothesis, for each p E Y we can determine by (2.42) the subspaces

for m0  m  M1 + 1. From this, we can determine the Chow form of

~L~K1-mY(Y). We thus can reconstruct the map (2.42) not merely up to
GL-equivalence, but up to the action of G. Now, operating our induction
in reverse, we can construct the projections

for all m  m0, modulo the action of G. Thus in particular, we can
construct

modulo the action of G.
We now wish to recover Z from JL. In the case at hand, this is easy as

H0(Y, 0398Y) = 0; however, it is interesting to give the general argument.
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To do this, we consider the group G consisting of pairs of analytic
isomorphisms

so that the diagram commutes and û is linear on each fiber. As

there is a natural exact sequence of Lie groups

Furthermore, we may make the identifications of the tangent spaces at
the identity 

so that the above diagram commutes. Further, G acts on H0(Y, L) by
pullback, so that the tangent space to the orbit of s is

Gives this, the argument given by Donagi [D] adapting techniques of
Mather and Yau [M-Y] goes through verbatim. This completes the proof
of Theorem (0.3), once we have shown the lemma needed to prove the
exactness of (2.25).

LEMMA 2.47: Let Y be a smooth (n + l)-fold, E ~ Y an analytic vector
bundle. If L - Y is a sufficiently ample vector bundle, then for any a  1,
the Koszul sequence 
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is exact as far as written.

PROOF: Surjectivity of 03B2a follows from Lemma 1.28. Exactness at the
middle term would follow from the surjectivity of the map

defined by

where 1 E H0(Y, L), se, ... , sr a basis for H0(Y, L ) and r, E H0(Y, E ~
La ). To see this implication, we note that there is a commutative diagram

where

Thus

so it will suffice for our purposes to show that ya is surjective.
On Y x Y, let 0 be the diagonal and 03C01, -u2 the canonical projections.

From the exact sequence

tensored with ’1Tt( L) Q5 03C0*2(E ~ La+1), we conclude that

Further, ya in these terms is the map
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and let 03C01, ’17"2’ ’17"3 be the projections. We may rewrite a equivalently as
the map

From tensoring the restriction sequence for 039423 on Y  Y  Y ap-

propriately, we see that a is surjective if

For L sufficiently ample, (2.55) holds for all a &#x3E; 1. This proves
Lemma 2.47. 0
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