@article{CM_1985__56_2_153_0, author = {Adachi, Toshiaki and Sunada, Toshikazu}, title = {Energy spectrum of certain harmonic mappings}, journal = {Compositio Mathematica}, pages = {153--170}, publisher = {Martinus Nijhoff Publishers}, volume = {56}, number = {2}, year = {1985}, mrnumber = {809864}, zbl = {0578.58009}, language = {en}, url = {http://archive.numdam.org/item/CM_1985__56_2_153_0/} }
TY - JOUR AU - Adachi, Toshiaki AU - Sunada, Toshikazu TI - Energy spectrum of certain harmonic mappings JO - Compositio Mathematica PY - 1985 SP - 153 EP - 170 VL - 56 IS - 2 PB - Martinus Nijhoff Publishers UR - http://archive.numdam.org/item/CM_1985__56_2_153_0/ LA - en ID - CM_1985__56_2_153_0 ER -
Adachi, Toshiaki; Sunada, Toshikazu. Energy spectrum of certain harmonic mappings. Compositio Mathematica, Tome 56 (1985) no. 2, pp. 153-170. http://archive.numdam.org/item/CM_1985__56_2_153_0/
[1] Geometry of Manifold, Academic Press: New York and London (1964). | MR | Zbl
and :[2] Gromov's almost flat manifolds, Asterisque 81 (1981). | Numdam | MR | Zbl
and :[3] Harmonic mappings of Riemannian manifold, Amer. J. Math. 86 (1964) 109-160. | MR | Zbl
and :[4] A report on harmonic maps, Bull. London Math. Soc. 10 (1978) 1-68. | MR | Zbl
and :[5] Inégalité isoperimetrique sur les variétés compactes sans bord, to appear.
:[6] On the length spectra of certain compact manifolds of negative curvature J. Diff. Geom. 12 (1977) 403-424. | MR | Zbl
:[7] Structures metriques sur les variétés riemannienes (rédigé par J. Lafontaine et P. Pansu), Cedic, Paris (1982). | MR | Zbl
:[8] On homotopic harmonic maps, Can. J. Math. 19 (1967) 673-687. | MR | Zbl
:[9] Equivariant Morse theory and closed geodesics, preprint. | MR | Zbl
:[10] Über die Isometriegruppe einer kompakten Mannigfaltigkeit mit negativer Krümmung, Helv. Phys. Acta 45 (1972) 277-288.
:[11] Über die Isometriegruppe bei kompakten Mannigfaltigkeiten negativer Krümmung, Comment. Math. Helv. 48 (1973) 14-30. | MR | Zbl
:[12] Finiteness and rigidities theorem for holomorphic mappings, Michigan Math. J. 28 (1981) 289-295. | MR | Zbl
, and :[13] Foundations of Differential Geometry, John Wiley & Sons: New Nork (1963). | Zbl
and :[14] Harmonic mappings of uniform bounded dilatation, Topology 16 (1977) 199-201. | MR | Zbl
:[15] On the Sobolev constant and the p-spectrum of a compact Riemannian manifolds, Ann. scient. Éc. Norm. Sup. 13 (1980) 451-469. | Numdam | MR | Zbl
:[16] The isometry groups of compact manifolds with non-positive curvature, Proc. Japan Acad. 51 (1975) 790-794. | MR | Zbl
:[17] Topological entropy for geodesic flows, Ann. of Math. 110 (1979) 567-573. | MR | Zbl
:[18] Applications of ergodic theory to the investigation of manifolds of negative curvature, Funct. Analy. and Appl. 3 (1969) 335-336. | MR | Zbl
:[19] Minimal varieties and harmonic maps in tori, Comment. Math. Helu. 50 (1975) 249-265. | MR | Zbl
and :[20] Finiteness of the family of rational and meromorphic mappings into algebraic varieties, Amer. J. Math. 104 (1982) 887-900. | MR | Zbl
and :[21] The Ahlfors-Schwarz lemma in several complex variables, Comment. Math. Helv. 55 (1980) 547-558. | MR | Zbl
:[22] Compact group actions and the topology of manifolds with non-positive curvature, Topology 18 (1979) 361-380. | MR | Zbl
and :[23] Holomorphic mappings into a compact quotient of symmetric bounded domain, Nagoya Math. J. 64 (1976) 159-175. | MR | Zbl
:[24] Rigidity of certain harmonic mappings, Invent. Math. 51 (1979) 297-307. | MR | Zbl
:[25] Tchebotarev's density theorem for closed geodesics in a compact locally symmetric space of negative curvature, preprint.
:[26] Geodesic flows and geodesic random walks, to appear in Advanced Studies in Pure Math. 3. | MR | Zbl
:[27] Morse theory by perturbation methods with applications to harmonic maps, Trans. AMS. 267 (1981) 569-583. | MR | Zbl
:[28] On the orders of the automorphism groups of certain projective manifolds, Progress in Math. 14 (1981) 145-158. | MR | Zbl
and ,[29] An analogue of the prime number theorem for closed orbits of Axion A flows, preprint. | MR | Zbl
and :[30] Totally geodesic maps, J. Differential Geom. 4 (1970) 73-79. | MR | Zbl
: