Compositio Mathematica

James D. LEWIS
 The cylinder homomorphism associated to quintic fourfolds

Compositio Mathematica, tome 56, $\mathrm{n}^{\circ} 3$ (1985), p. 315-329
http://www.numdam.org/item?id=CM_1985__56_3_315_0
© Foundation Compositio Mathematica, 1985, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

THE CYLINDER HOMOMORPHISM ASSOCIATED TO QUINTIC FOURFOLDS

James D. Lewis

§0. Introduction

Let X be a quintic fourfold (smooth hypersurface of degree 5 in \mathbb{P}^{5}), and Ω_{X} the variety of lines in X. According to [1], if X is generically chosen, then Ω_{X} is a smooth surface. Let $\Phi_{*}: H_{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow H_{4}(X, \mathbb{Q})$ be the "cylinder homorphism" obtained by blowing up each point on $\gamma \in \mathrm{H}_{2}\left(\Omega_{X}, \mathbb{Q}\right)$ to a corresponding line in X (thus sweeping out a 4 cycle in X). This homomorphism was studied in [4], and in particular, viewing Φ_{*} on cohomology (viz Poincaré duality):
(0.1) Theorem: ([4; (4.4)]). Let X be generic, $\omega \in H^{1,1}(X, \mathbb{Q})$ the Kähler class dual to the hyperplane section of X. Then $\Phi_{*}: H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow$ $H^{4}(X, \mathbb{Q}) / \mathbb{Q} \omega \wedge \omega$ is an epimorphism.

For relatively elementary reasons (see (5.5)), it is also true that Φ_{*} : $H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow H^{4}(X, \mathbb{Q})$ is an epimorphism for generic X. This paper is devoted to the answering of the following question:

$$
\text { (0.2) What is the kernel of } \Phi_{*} \text { ? }
$$

In order to satisfactorily answer (0.2), some terminology has to be introduced. The family of hypersurfaces $\left\{X_{v}\right\}_{v \in \mathbb{P}^{N}}$ of degree 5 in \mathbb{P}^{5} is a projective space of dimension $N=251$. Let $U \subset \mathbb{P}^{N}$ be the open set parameterizing the smooth $X_{v}, U_{0} \subset U$ the open subset corresponding to those X for which Ω_{X} is a smooth, irreducible surface. Let $\Delta \subset U_{0}$ be a polydisk centered at $0 \in \Delta, X=X_{0}$, and for any $v \in \Delta$, define j_{v} : $\Omega_{X_{1}} \leftrightarrow \amalg_{v \in \Delta^{*}} \Omega_{X_{r}}$ to be the inclusion morphism. Now $\amalg_{v \in \Delta^{\prime}} \Omega_{X_{r}}$ is topologically equivalent to $\Delta \times \Omega_{X_{,}}$(see [7]) for any given $v \in \Delta$, and therefore there is an isomorphism $j_{v}^{*} \circ\left(j_{0}^{*}\right)^{-1}: H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow H^{2}\left(\Omega_{X_{i}}, \mathbb{Q}\right)$.
(0.3) Definition:
(i) $H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)=\left\{\gamma \in H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \mid j_{v}^{*} \circ\left(j_{0}^{*}\right)^{-1}(\gamma) \in H^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)\right.$ for all $v \in \Delta\}$.
(ii) $H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)=$ orthogonal complement of $H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)$ in $H^{2}\left(\Omega_{X}, \mathbb{Q}\right)$.
defined as follows (see (3.1) for a precise definition): (0.5) Let l_{x} be the line corresponding to $x \in \Omega_{x}$. Define $D(x)=\left\{y \in \Omega_{x} \mid y \neq x \& l_{x} \cap l_{y} \neq\right.$ $\varnothing\}$. It is proven (see (2.5)) that for generic $X, D(x)$ is a finite set for generic $x \in \Omega_{X}$.

Our theorem is: (X generic)
(0.6) Theorem:
(i) i preserves the subspaces defined in (0.3)(i)\&(ii); moreover i : $H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$ is an isomorphism.
(ii) There is a s.e.s.:

$$
0 \rightarrow(i+119 \cdot I) H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \xrightarrow{i} H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \xrightarrow{\Phi_{*}} \operatorname{Prim}^{4}(X, \mathbb{Q}) \rightarrow 0,
$$

where i and I are respectively the inclusion and identity morphisms. (iii) $\Phi_{*}\left(H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)\right)=\mathbb{Q} \omega \wedge \omega$.
(0.7) Corollary:

is sign commutative.

Much of the techniques of this paper are borrowed from an interesting paper by Tyurin ([6]).

§1. Notation

(i) $\mathbb{Z}=$ integers, $\mathbb{Q}=$ rational numbers, $\mathbb{C}=$ complex numbers
(ii) X is a quintic fourfold, \mathbb{P}^{M} is complex, projective M-space.
(iii) If Y is a projective, algebraic manifold, then $H^{p, p}(Y)$ is Dolbeault cohomology of type (p, p) and $H^{p, p}(Y, K)=H^{p, p}(Y) \cap$ $H^{2 p}(Y, K)$, where $K=\mathbb{Z}, \mathbb{Q}$.
(iv) Prim stands for primitive cohomology.
(v) There are 2 senses to the word "generic" in this paper. We say that X is generic if it is a member of a family $\left\{X_{v}\right\}_{v \in W}$ satisfying a given property, and where $W \subset \mathbb{P}^{N}$ is a Zariski open subset. The other use of the word "generic" is where X satisfies a given property that is transcendental in nature, and in this case the word generic will be prefixed by "transcendental".
(vi) Let $Y \subset \mathbb{P}^{M}$ be given as in (iii) above, $G=$ Grassmannian of lines in \mathbb{P}^{M}. For $x \in G$, let l_{x} be the corresponding line in \mathbb{P}^{M}. The variety of lines in Y, denoted by Ω_{Y} is defined as follows: $\Omega_{Y}=\left\{x \in G \mid l_{x} \subset Y\right\}$.
(vii) Given Y as in (iii) and $S \subset Y$ an algebraic subset. Then $\operatorname{dim} S=$ $\max \{\operatorname{dim}$ of irreducible components of $S\}$, and $\operatorname{codim}_{Y} S=\operatorname{dim} Y-$ $\operatorname{dim} S$.

§2. The variety of lines in X

Let $Y \subset \mathbb{P}^{n}$ be a generic hypersurface of degree d, and assume $2 n-d-$ $5 \geqslant 0$. An immediate consequence of [1] is:
(2.1) Theorem: Ω_{Y} is smooth and irreducible, of dimension $2 n-d-3$.

There are two noteworthy cases to consider:
(2.2) Corollary: Given X a generic quintic fourfold, and Z a generic fivefold of degree 5 in \mathbb{P}^{6}, then:
(i) Ω_{X} is a smooth, irreducible surface and
(ii) Ω_{Z} is a smooth, irreducible fourfold.

An argument identical to one given in [6; p.38] yields:
(2.3) Proposition: Given Z as in (2.2). Then through a generic point of Z passes 5! lines.

Before stating the main result of this section, we introduce the following notation: Let $c \in \Omega_{X}, l_{c} \subset X$ the corresponding line.
(2.4) $\Omega_{X, c}=\left\{y \in \Omega_{X} \mid l_{y} \cap l_{c} \neq \emptyset\right\}$.We prove:
(2.5) Theorem: Let X be generic.
(i) $\operatorname{dim} \Omega_{X, c}=0$ for generic $c \in \Omega_{X}$.
(ii) Let $c \in \Omega_{X}$ be generic. Then for any $y \in l_{c}$, there is at most one line $l_{0} \subset X$ other than l_{c} passing through y.

Proof: We start by letting X be any degree 5 hypersurface in \mathbb{P}^{5}, and $x \in X$. If we let [$X_{0}, X_{1}, X_{2}, X_{3}, X_{4}, X_{5}$] be the homogeneous coordinates defining \mathbb{P}^{5}, then X admits as its defining equation $F=0, F \in$ $\mathbb{C}\left[X_{0}, \ldots, X_{5}\right]$ a homogeneous polynomial of degree 5 . Now after applying a projective transformation, there is no loss of generality in assuming $x=[0,0,0,0,0,1]$. In this case F takes the form: $F=X_{5}^{4} F_{1}+X_{5}^{3} F_{2}+$ $X_{5}^{2} F_{3}+X_{5} F_{4}+F_{5}$, where $F_{i} \in \mathbb{C}\left[X_{0}, \ldots, X_{4}\right]$ is homogeneous of degree i. We now convert to affine coordinates by setting $x_{t}=X_{i} / X_{5}, i=0, \ldots, 4$. Define $f_{1}=F_{1} / X_{5}^{\prime}$. and note that $f_{i} \in \mathbb{C}\left[x_{0}, \ldots, x_{4}\right]$ is homogeneous of degree i. Likewise, set $f=F / X_{5}^{5}$, and note that $f=f_{1}+f_{2}+f_{3}+f_{4}+f_{5}$. In affine coordinates $x=(0,0,0,0,0)$, therefore any line l_{a} passing through x must be of the form $l_{a}=\{t a \mid t \in \mathbb{C}\}$, where $a \in \mathbb{C}^{5}$ is non-zero.

It follows that

$$
\begin{array}{lll}
l_{a} \subset X & \Leftrightarrow & f_{1}(t a)+\cdots+f_{5}(t a)=0 \\
\text { for all } t \\
\text { i.e. } & \Leftrightarrow & t f_{1}(a)+\cdots+t^{5} f_{5}(a)=0 \\
& \Leftrightarrow & \text { for all } t \\
& \Leftrightarrow f_{1}(a)=\cdots=f_{5}(a)=0 &
\end{array}
$$

The upshot of this argument is that the lines in X passing through x correspond to the zeros of f_{1}, \ldots, f_{5} in \mathbb{P}^{4}. Note that for generic $x \in X$, no such line exists. Let $V(i)$ be the vector space of homogeneous polynomials of degree i in $\mathbb{C}\left[x_{0}, \ldots, x_{4}\right]$, and set $V=V(1) \oplus \ldots \oplus V(5)$. It is clear from our construction that X determines a point $v \in \mathbb{P}(V)$, conversely, any $v \in \mathbb{P}(V)$ determines X so that $x \in X$.
(2.6) Every $v \in \mathbb{P}(V)$ determines an algebraic set $S(v)$ defined as the zeros of f_{1}, \ldots, f_{5} in \mathbb{P}^{4}. Define $V_{1}=\{v \in \mathbb{P}(V) \mid \operatorname{dim} S(v) \geqslant 0\}$.If $v \in$ $\mathbb{P}(V)$ is given so that $\operatorname{dim} S(v)=0$, then define $\# S(v)$ to be the cardinality of $S(v)$ as a set. For $i=2,3$ define $V_{t}=\left\{v \in V_{1} \mid \operatorname{dim} S(v) \geqslant 1\right.$ or $\# S(v) \geqslant i\}$, and set $V_{B}=\left\{v \in V_{1} \mid \operatorname{dim} S(v) \geqslant 1\right\}$. We need the following:
(2.7) Lemma: $\operatorname{codim}_{\mathbb{P}(V)} V_{1}=i$, for $i=1,2,3 \& \operatorname{codim}_{\mathbb{P}(V)} V_{B} \geqslant 5$.

Proof: Let $V^{\prime}=V(j) \oplus \cdots \oplus V(5) \subset V$, for $j=1, \ldots, 5$, and $\mathbb{P}\left(V^{\prime}\right) \subset$ $\mathbb{P}(V)$ the corresponding projective subspaces. Note that for $v \in \mathbb{P}\left(V^{\prime}\right)$, $S(v)=$ zeros of $\left\{f_{j}, \ldots, f_{5}\right\}$ in \mathbb{P}^{4}. We will prove (2.7) case-by-case:
(a) $\operatorname{codim}_{\mathbb{P}(V)} V_{1}=1$: It follows from general principles ([5; (3.30)]) that $v \in \mathbb{P}\left(V^{2}\right) \Rightarrow S(v) \neq \emptyset$, so for such v, choose any $y \in S(v)$. Clearly $\left\{f_{1} \in\right.$ $\left.\mathbb{P}(V(1)) \mid f_{1}(y)=0\right\}$ cuts out a codimension 1 subspace of $\mathbb{P}(V(1))$, hence $\operatorname{codim}_{\mathbb{P}(V)} V_{1}=1$.
(b) $\operatorname{codim}_{\mathbb{P}(V)} V_{2}=2$: Let $v \in V^{2}$ be given so that $\operatorname{dim} S(v)=0$ and $\# S(v) \geqslant 2$. Let $y_{1}, y_{2} \in S(v)$ with $y_{1} \neq y_{2}$. Then $\left\{f_{1} \in \mathbb{P}(V(1)) \mid f_{1}\left(y_{1}\right)=\right.$ $\left.f_{1}\left(y_{2}\right)=0\right\}$ cuts out a subspace of codimension 2 in $\mathbb{P}(V(1))$. Statement (b) now follows from:
(2.8) Sublemma: $\left\{v \in \mathbb{P}\left(V^{2}\right) \mid \operatorname{dim} S(v) \geqslant 1\right\}$ has codimension $\geqslant 3$ in $\mathbb{P}\left(V^{2}\right)$.

Proof: If $v \in \mathbb{P}\left(V^{3}\right)$, then $\operatorname{dim} S(v) \geqslant 1$ and equal to 1 for generic v. Define $H=\left\{(y, v) \in \mathbb{P}^{4} \times \mathbb{P}\left(V^{3}\right) \mid y \in S(v)\right\}$, and let q_{1}, q_{2} be the canonical projections in the diagram below:

Note that the fibers of q_{1} are projective spaces，all of which are projectively equivalent to each other；moreover q_{1}（and q_{2} ）are surjective， hence H is irreducible．In addition $q_{2}^{-1}(v)=S(v)$ ，and by our construc－ tion，the generic fiber of q_{2} is a smooth，irreducible curve of degree 60 （Bezout＇s theorem）．Let $K=\left\{v \in \mathbb{P}\left(V^{3}\right) \mid \operatorname{dim} S(v) \geqslant 2\right\}$ ．Then by con－ sidering the morphism q_{2} ，it follows that $\operatorname{codim}_{\left.P_{(} V^{3}\right)} K \geqslant 2$ ，（in fact $\left.\operatorname{codim}_{\mathbb{P}\left(V^{2}\right)} K \geqslant 3\right)$ ．If $v \in \mathbb{P}\left(V^{3}\right)$ is given so that $\operatorname{dim} S(v)=1$ ，then elementary reasoning implies $\left\{f_{2} \in \mathbb{P}(V(2)) \mid f_{2}\right.$ vanishes on a component of $S(v)$ of dimension 1$\}$ is of codimension $\geqslant 3$ in $\mathbb{P}(V(2))$ ．On the other hand if $v \in \mathbb{P}\left(V^{3}\right)$ is given so that $\operatorname{dim} S(v) \geqslant 2$ ，then one constructs a diagram analogous to（2．9），replacing $\mathbb{P}\left(V^{3}\right)$ by $\mathbb{P}\left(V^{4}\right)$ ，modifying H accordingly，and applying a similar reasoning as above to conclude $\operatorname{codim}_{\mathbb{P}\left(V^{2}\right)} K \geqslant 3$ ，hence（2．8）．
（c） $\operatorname{codim}_{\mathbb{P}(V)} V_{3}=3$ ：If $v \in V^{2}$ is generically chosen，then $\# S(v)=5$ ！ （bezout＇s theorem），moreover no 3 points in $S(v)$ are collinear．If y_{1}, y_{2} ， $y_{3} \in S(v)$ are distinct，then $\left\{f_{1} \in \mathbb{P}(V(1)) \mid f_{1}\left(y_{1}\right)=f_{1}\left(y_{2}\right)=f_{1}\left(y_{3}\right)=0\right\}$ is a subspace of codimension 3in $\mathbb{P}(V(1))$ ．The case that $v \in V^{2}$ is given so that $\operatorname{dim} S(v) \geqslant 1$ is taken care of by（2．8）．There remains the possibility that $v \in V^{2}$ is given so that $\operatorname{dim} S(v)=0$ and that some collinearity（of 3 points）exists．For this to happen，v would have to belong to a proper subvariety，of V^{2} ，and one can easily argue that statement（c）still holds．
（d） $\operatorname{codim}_{\mathbb{P}(V)} V_{B} \geqslant 5$ ：A construction similar to the proof of（2．8）implies $\left\{v \in \mathbb{P}\left(V^{2}\right) \mid \operatorname{dim} S(v) \geqslant 2\right\}$ is of codimension $\geqslant 5$ in $\mathbb{P}\left(V^{2}\right)$ ．Now sup－ pose $v \in \mathbb{P}\left(V^{2}\right)$ is given so that $\operatorname{dim} S(v)=1$ ．Then $\left\{f_{1} \in \mathbb{P}(V(1)) \mid f_{1}\right.$ vanishes on a dimension 1 component of $S(v)\}$ is of codimension $\geqslant 2$ in $\mathbb{P}(V(1))$ ．We now apply（2．8）to conclude statement（d），and the proof of （2．7）．

（2．10）Conclusion of the proof of（2．5）

Recall at the beginning of the proof a choice of $x \in \mathbb{P}^{5}$ which determines $\mathbb{P}(V), V_{1}, V_{2}, V_{3}, V_{B}$ ，where $\mathbb{P}(V)$ corresponds to those $X \subset \mathbb{P}^{5}$ for which $x \in X$ ．To indicate that our choice of x determines $\mathbb{P}(V)$ ，we will relabel things with the obvious meaning as $\mathbb{P}\left(V_{v}\right), V_{1, \mathrm{r}}, V_{2, \mathrm{v}}, V_{3, \mathrm{v}}, V_{B, 1}$ ． Now define $W=山_{x \in \mathbb{P}^{s}} \mathbb{P}\left(V_{x}\right), W_{t}=山_{x \in \mathbb{P}^{\wedge}} V_{t, x}$ for $i=1,2,3, W_{B}=$ $\amalg_{x \in \mathbb{P}^{s}} V_{B, x}$ ．It is easy to verify that W, W_{\prime}＇s，W_{B} all have the structure of an algebraic variety，moreover by（2．7）：
（2．11） $\operatorname{codim}_{W} W_{l}=i$ for $i=1,2,3$ and $\operatorname{codim}_{W} W_{B} \geqslant 5$.
Recall the statement just preceeding（2．6），that for any X and $x \in X, X$ determines a point $v_{x} \in \mathbb{P}\left(V_{x}\right)$ ．Therefore X determines a fourfold $X_{W} \subset$ W given by the formula $X_{W}=山_{x \in X} v_{x}$ ．For generic $X \subset \mathbb{P}^{5}, \operatorname{dim}\left\{X_{W} \cap\right.$ $\left.W_{1}\right\}=4-i$ ，and $X_{W} \cap W_{B}=\varnothing$ ．Translating this in terms of Ω_{X} ，（2．5） clearly holds．

§3. The incidence and cylinder homomorphisms

Let $D_{1} \subset \Omega_{X} \times \Omega_{X}$ be given by the formula: $D_{1}=\left\{\left(x_{1}, x_{2}\right) \in \Omega_{X} \times\right.$ $\left.\Omega_{X} \mid l_{x_{1}} \cap l_{x_{2}} \neq \emptyset \& x_{1} \neq x_{2}\right\}$. It is clear from the definition that $\left\{x, D_{1}(x)\right\}=\Omega_{X, x}$. Throughout this section X will be assumed to be generic.
(3.1) Definition: The incidence correspondance $D \subset \Omega_{X} \times \Omega_{X}$ is defined to be: $D=\bar{D}_{1}$.

Note that $\operatorname{codim}_{\Omega_{\lambda} \times \Omega_{1}} D=2$, therefore the fundamental class of D defines a cocycle $[D] \in H^{4}\left(\Omega_{x} \times \Omega_{x}, \mathbb{Q}\right)$. Now the component of $[D]$ in $H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \otimes H^{2}\left(\Omega_{X}, \mathbb{Q}\right)$, via the Künneth formula $H^{4}\left(\Omega_{x} \times \Omega_{X}, \mathbb{Q}\right)=$ $\oplus_{p+q=4} H^{p}\left(\Omega_{X}, \mathbb{Q}\right) \otimes H^{q}\left(\Omega_{X}, \mathbb{Q}\right)$, induces a morphism $i: H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow$ $H^{2}\left(\Omega_{X}, \mathbb{Q}\right)$, where we use the fact $H^{2}\left(\Omega_{x}, \mathbb{Q}\right)^{*} \cong H^{2}\left(\Omega_{x}, \mathbb{Q}\right)$ (Poincaré duality).
(3.2) Definition: The homomorphism $i: H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow H^{2}\left(\Omega_{X}, \mathbb{Q}\right)$ is called the incidence homomorphism.

The morphism i factors into a composite of 3 other morphisms given as follows:
(3.3) Let
(i) $p: D \rightarrow \Omega_{X}$ be the projection onto the first factor,
(ii) $j: \Omega_{X} \times \Omega_{X} \rightarrow \Omega_{X} \times \Omega_{X}$ the morphism which permutes the factors, i.e. $j\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$. Note that $j(D)=D$.

Then:
(3.4) Proposition: $i=p_{*} \circ j \circ p^{*}$.

Proof: Use the fact that the correspondence defined by $p_{*} \circ j \circ p^{*}$ in $\Omega_{X} \times \Omega_{X}$ is precisely D.

(3.5) The cylinder homomorphism

We will be constantly referring to the following diagram:

where, Z is a smooth degree 5 hypersurface in \mathbb{P}^{6}, for which $X \subset Z$ is a (smooth) hyperplane section

$$
\begin{aligned}
& P(X)=\left\{(c, x) \in \Omega_{X} \times X \mid x \in l_{c}\right\} \\
& P(Z)=\left\{(c, z) \in \Omega_{Z} \times Z \mid z \in l_{c}\right\}
\end{aligned}
$$

ρ (resp. ρ_{Z}) is the projection of $P(X)$ (resp. $P(Z)$) onto the first factor
$\varphi\left(\operatorname{resp} . \varphi_{Z}\right)$ is the projection of $P(X)($ resp. $P(Z))$ onto the second factor

$$
\tilde{X}=\varphi_{Z}^{-1}(X), \varphi_{X}=\varphi_{\left.Z\right|_{i}}: \tilde{X} \rightarrow X, \rho_{X}=\rho_{\left.Z\right|_{i}}: \tilde{X} \rightarrow \Omega_{Z}
$$

$i_{1}, i_{2}, i_{3}, j_{1}, j_{2}$ are inclusion morphisms.
The same reasoning given in [2; p. 81] implies the following:
(3.7) Proposition (see [4]):
(i) $P(X), P(Z)$ are \mathbb{P}^{1} bundles over Ω_{X} and Ω_{Z} respectively.
(ii) $P(X), P(Z), \tilde{X}, \Omega_{X}, \Omega_{Z}$ are smooth and irreducible.
(iii) All morphisms in (3.6), except for inclusions, are surjective.
(iv) $\operatorname{deg} \varphi_{Z}=\operatorname{deg} \varphi_{X}=5$!.
(v) ρ_{X} is birational and induces: $\tilde{X} \cong$ blow up of Ω_{Z} along Ω_{X}.
(3.8) Remarks:
(i) (2.2 implies the smoothness and irreducibility for Ω_{X} and Ω_{z}.
(ii) (3.7) (iv) is a consequence of (2.3).

As will be discussed in $\S 4$, the threefold $\varphi(P(X))$ has a 2-dimensional singular set. Let S be a generic hyperplane section of $\varphi(P(X)$). One should expect S to be singular. The next result is a direct consequence of (2.5), together with the definitions of $P(X), \rho, \varphi$:
(3.9) Proposition: φ is a birational morphism, moreover φ induces a birational map $\Omega_{X} \approx S$.
(3.10) Definition: The cylinder homomorphism $\Phi_{*}: H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow$ $H^{4}(X, \mathbb{Q})$ is given by: $\Phi_{*}=j_{1, *} \circ \varphi_{*} \circ \rho^{*}$.

Let $I: H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow H^{2}\left(\Omega_{X}, \mathbb{Q}\right)$ be the identity morphism, $\omega \in$ $H^{1,1}(X, \mathbb{Z})$ the Kähler class defined in (0.1). The next result ties in a relationship between i and Φ_{*}.
(3.11) Proposition: $\Phi_{*}\left(\left\{(i+119 \cdot I) H^{2}\left(\Omega_{X}, \mathbb{Q}\right)\right\}\right)=0$ in $H^{4}(X, \mathbb{Q}) /$ $\mathbb{Q} \omega \wedge \omega$

Proof: The proof of (3.11) is formally identical to the proof of lemma 6 in [6; p. 42] where
(a) Z and $\operatorname{deg} \varphi_{\mathrm{Z}}=5$! replace X_{4} and $\operatorname{deg} \varphi$ in [6].
(b) the cycles are even dimensional.
(c) the weak Lefschetz theorem applied to the inclusions $Z \subset \mathbb{P}^{6} \& j_{2}$: $X \hookrightarrow Z$ implies $j_{2}^{*}\left(H^{4}(Z, \mathbb{Q})\right)=\mathbb{Q} \omega \wedge \omega$.
(d) $119=5!-1$.

$\S 4$. The numerical characteristic of the surface Ω_{X}

Let $\psi_{1}: D_{1} \rightarrow X$ be the morphism defined by the formula: $\psi_{1}\left(x_{1}, x_{2}\right)=$ $l_{x_{1}} \cap l_{x_{2}} \in X$. Then ψ_{1} extends to a rational map $\psi_{0}: D \rightarrow X$, moreover $\operatorname{deg} \psi_{0}=2$ by (2.5)(ii). Let $\Gamma=D /\{j\}$ with quotient morphism ψ : $D \rightarrow \Gamma$. There is a factorization of ψ_{0} :

where k is a birational map onto its image, $\psi_{0}(\mathrm{D})$. This factorization will be useful in the next section where we consider an analogue to the fundamental computational lemma in [6; p. 45]. Note that the fibers of φ in (3.6) are a discrete over every point in $\varphi(P(X))$, moreover $\# \varphi^{-1}(x) \geqslant 2$ over $\overline{\psi_{1}\left(D_{1}\right)}$ and $\# \varphi^{-1}(x)=1$ over $\varphi(P(X))-\overline{\psi_{1}\left(D_{1}\right)}$, where $\#$ includes multiplicity. By applying Zariski's Main theorem to φ, it is clear that $\operatorname{sing}(\varphi(P(X)))=\overline{\psi_{1}\left(D_{1}\right)}$. On the other hand, $\overline{\psi_{1}\left(D_{1}\right)}=\psi_{0}(D)$, therefore, taking into account the result (2.5)(ii), we can summarize the above discussion in:
(4.2) Proposition: $\operatorname{sing}(\varphi(P(X)))=\psi_{0}(D)$, moreover through a generic point of $\operatorname{sing}(\varphi(P(X)))$ passes exactly 2 lines in X.

So far we have only focused on the number of lines passing through a given point in $\varphi(P(X))$. We now turn our attention to the problem of determining the number of lines meeting a generic line in X. This number will be denoted by N_{0}, and bears the title of this section, namely, recall the definition of p in (3.3)(i):
(4.3) Definition: The numerical characteristic N_{0} of Ω_{X} is given by: $N_{0}=\operatorname{deg} p$.
(4.4) Remark: This definition is borrowed in part from [6; p. 40].

There is another ingredient we want to introduce, but before doing so, we recall from the Lefschetz theorem applied to $X \subset \mathbb{P}^{5}$ that $H^{2}(X, \mathbb{Z})$ $=\mathbb{Z} \omega$. Let $[\varphi(P(X))]$ be the fundamental class of $\varphi(P(X))$ in $H^{2}(X, \mathbb{Z})$. Then there is a positive integer d for which $[\varphi(P(X))]=d \omega$. Geometri-
cally, d is the degree of the hypersurface in \mathbb{P}^{5} cutting out $\varphi(P(X))$ in X. A partial generalization of Fano's work (see [6; p. 40]) implies d and N_{0} are related by the simple:
(4.5) Proposition: $d-N_{0} \leqslant-2$.

Proof: The proof is essentially borrowed from lemma 5 in [6; p. 40], but there are important differences accounting for the changes in statements between (4.5) and [6]. Let $l=\mathbb{P}^{1}, \mathbb{P}^{3}, X$ be generically chosen in \mathbb{P}^{5}, so that $l \subset X \cap \mathbb{P}^{3}$, and that $S_{0}=\mathbb{P}^{3} \cap X$ is a smooth quintic surface. The adjunction formula for $S_{0} \subset \mathbb{P}^{3}$ implies $\Omega_{S_{0}}^{2}=\mathcal{O}_{S_{0}}(1)$, where $\Omega_{S_{0}}^{2}$ is the canonical sheaf of S_{0}. Note that l is the only line in S_{0}, since a generic hyperplane section of X contains only a finite number of lines ([1]), and S_{0} is cut out by a generic \mathbb{P}^{3}. If H is a generic hyperplane in \mathbb{P}^{5} containing l, then $H \cap S_{0}=l+C_{0}$, where C_{0} is a smooth and irreducible curve. Note from the above expression for $\Omega_{S_{0}}^{2}$ that $\Omega_{S_{0}}^{2}=\mathcal{O}_{S_{0}}\left(H \cap S_{0}\right)=$ $\mathcal{O}_{S_{0}}\left(l+C_{0}\right)$. Now taking intersections: $1=(l \cdot H)_{\mathbb{P}^{5}}=\left(l \cdot\left(H \cdot S_{0}\right)\right)_{S_{0}}=(l$ $\left.\cdot\left(l+C_{0}\right)\right)_{S_{0}},($ where $\cdot=\cap)$, consequently $\left(l \cdot C_{0}\right)_{S_{0}}=1-l^{2}$. On the other hand, the adjunction formula applied to $l \subset S_{0}$ implies: $-2=(l \cdot(l+(H$ - $\left.\left.S_{0}\right)\right)_{S_{0}}=l^{2}+1$, hence $l^{2}=-3$, afortiori $\left(l \cdot C_{0}\right)_{S_{0}}=4$. Next $S_{0} \cap$ $\varphi(P(X))=l+C_{1} \sim d\left(H \cdot S_{0}\right)=d l+d C_{0}$, hence $C_{1} \sim(d-1) l+d C_{0}$, therefore $\left(C_{1} \cdot l\right)_{S_{0}}=(d-1) l^{2}+d\left(l \cdot C_{0}\right)_{S_{0}}=d+3$. Now $\varphi^{-1}(\varphi(P(X))$ $\left.\cap S_{0}\right)=l+\varphi^{-1}\left(C_{1}\right)$ where $\varphi^{-1}\left(C_{1}\right)$ is no longer regarded as a global section of the fibering $p: P(X) \rightarrow \Omega_{X}$ as in [6], but rather as a section of ρ over a curve in Ω_{X}, where we use the aforementioned fact that l is the only line in S. Then among the points of intersection in $C_{1} \cdot l$ is a possible point of intersection of l with $\varphi^{-1}\left(C_{1}\right)$, and the remaining points are the intersections of l with at most the other lines in X meeting l. Therefore $\left(C_{1} \cdot l\right)_{S_{0}} \leqslant N_{0}+1$, afortiori $d+3 \leqslant N_{0}+1$, which proves (4.5).

Let H_{1} be the hypersurface of degree d which cuts out $\varphi(P(X)) \subset X$, and let $l \subset X$ be any line. Since $l \subset X$, we have $\left(H_{1} \circ l\right)_{\mathbb{P}^{s}}=\left(\left(H_{1} \cdot X\right) \cdot l\right)_{X}$. Furthermore $d=\left(H_{1} \cdot l\right)_{\mathbb{P}^{s}}$, moreover $H_{1} \cap X=\varphi(P(X))$. In summary:
(4.6) Proposition: $d=(\varphi(P(X)) \circ l)_{X}$.

This concludes §4.

§5. The fundamental computational lemma (F.C.L.)

In this section we will arrive at a version of the F.C.L. in [6] for Φ_{*} : $H_{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow H_{4}(X, \mathbb{Q})$ where Φ_{*} is studied on the homology level via Poincaré duality. As in $\S 4, X$ will be a generic quintic. Now recalling the
diagram in (4.1) together with (4.2), there is a diagram:

Define $\Gamma_{0}=\{y \in \Gamma \mid k$ is regular at $y \& k(y) \notin \operatorname{sing}(\operatorname{sing} \varphi(P(X)))\}$. Clearly Γ_{0} is smooth and Zariski open in Γ. Next define $D_{0}=\psi^{-1}\left(\Gamma_{0}\right)$, $\Sigma_{0}=D-D_{0}$, and note that $j\left(D_{0}\right)=D_{0}$ and Σ_{0} is closed in D. Note that $\Sigma=p\left(\Sigma_{0}\right) \subset \Omega_{X}$ is closed and of codimension $\geqslant 1$. Define $\Omega_{X, 0}=\Omega_{X}-\Sigma$. We can desingularize the diagram in (5.1) to:

where all maps are morphisms, and $\tilde{D}, \tilde{\Gamma}$ are smooth. Diagrams (5.1) \& (5.2) are analogous to the diagrams on $p .46 \& 47$ in [6], indeed we have even tried to retain similar notation. Let $i_{0}: \Omega_{X, 0} \rightarrow \Omega_{X}$ be the inclusion, and set $H_{2}\left(\Omega_{X}, \mathbb{Q}\right)_{\Sigma}=i_{0, *}\left(H_{2}\left(\Omega_{X, 0}, \mathbb{Q}\right)\right) \subset H_{2}\left(\Omega_{X}, \mathbb{Q}\right)$. We can now state:
(5.3) Theorem (F.C.L.): Let $\gamma_{1}, \gamma_{2} \in H_{2}\left(\Omega_{X}, \mathbb{Q}\right)_{\Sigma}$. Then $\left(\Phi_{*}\left(\gamma_{1}\right)\right.$. $\left.\Phi_{*}\left(\gamma_{2}\right)\right)_{X}=\left(d-N_{0}\right)\left(\gamma_{1} \cdot \gamma_{2}\right)_{\Omega_{X}}+\left(i \gamma_{1} \cdot \gamma_{2}\right)_{\Omega_{X}}$.

Proof: Except for dimensions of cycles in question, the proof of (5.3) is formally identical to the proof of the F.C.L. in [6; p. 45], which begins on p. 46 of [6], and involves the integral invariants N_{0}, and d of (4.6).
(5.4) For the remainder of this section, we will occupy ourselves with the problem of reformulating (5.3) so as to not involve the particular algebraic cycle $\Sigma \subset \Omega_{X}$.

We will now fulfill a promise made earlier:
(5.5) Proposition: $\Phi_{*}: H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow H^{4}(X, \mathbb{Q})$ is surjective.

Proof: We will use the notation following (0.2) where $\Delta \subset U_{0}$ is a polydisk centered at $0 \in \Delta, X=X_{0} \in \amalg_{v \in \Delta} X_{v}$. Let $i_{v}: X_{v} \hookrightarrow \bigsqcup_{v \in \Delta} X_{v}$ be the inclusion morphism. Let X be transcendentally generic. Now because Δ is uncountable, any $\gamma \in H^{2,2}(X, \mathbb{Q})$ will have a horizontal displace-
ment in $\amalg_{v \in \Delta} H^{4}\left(X_{v}, \mathbb{Q}\right)$ which is also of Hodge type (2,2), i.e. $i_{r}^{*} \circ\left(i_{0}^{*}\right)^{-1}(\gamma) \in H^{2,2}\left(X_{v}, \mathbb{Q}\right)$ for all $v \in \Delta$. However it is a general fact (using Lefschetz pencils) that such $\gamma \in \mathbb{Q} \omega \wedge \omega$, hence X transcendentally generic $\Rightarrow H^{2,2}(X, \mathbb{Q})=\mathbb{Q} \omega \wedge \omega$. This means that the only algebraic cocycle in $H^{4}(X, \mathbb{Q})$ is a \mathbb{Q} multiple of $\omega \wedge \omega$. Since Φ_{*} preserves algebraicity, clearly Φ_{*} is surjective for transcendental X. Now it can be easily seen that the cylinder homomorphisms $\Phi_{v, *}: H^{2}\left(\Omega_{X}, \mathbb{C}\right) \rightarrow$ $H^{4}\left(X_{v}, \mathbb{C}\right)$ piece together to form a morphism $\bar{\Phi}: \amalg_{v \in \Delta} H^{2}\left(\Omega_{X_{v}}, \mathbb{C}\right) \rightarrow$ $\amalg_{v \in \Delta} H^{4}\left(X_{v}, \mathbb{C}\right)$ of (trivial) analytic vector bundles over Δ. From the above discussion $\bar{\Phi}$ is fiberwise surjective on a uncountable dense subset of Δ, hence by analytic considerations, must be surjective over Δ. Q.E.D.

Let $k_{0}: \Sigma \hookrightarrow \Omega_{X}$ be the inclusion. Our next result is:

Proposition:

$$
H_{2}\left(\Omega_{X}, \mathbb{Q}\right)_{\Sigma}=\left\{\begin{array}{c}
\gamma \in H_{2}\left(\Omega_{X}, \mathbb{Q}\right) \mid\left(\gamma \cdot k_{0, *}(\alpha)\right)_{\Omega_{X}}=0 \tag{5.6}\\
\text { for all } \alpha \in H_{2}(\Sigma, \mathbb{Q})
\end{array}\right\} .
$$

Proof: It follows from [3; ch. 27] that there is a commutative diagram: (for our purposes $H^{2}\left(\Omega_{X}, \mathbb{C}\right)$ will be viewed as deRham cohomology)

$$
\begin{gather*}
H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \xrightarrow{k_{0}^{*}} H^{2}(\Sigma, \mathbb{Q}) \tag{5.7}\\
H_{2}\left(\Omega_{X, 0}, \mathbb{Q}\right) \xrightarrow{D_{P} \uparrow{ }^{i_{0,} *}} H_{2}\left(\Omega_{X}, \mathbb{Q}\right) \xrightarrow{f_{*}} H_{2}\left(\Omega_{X}, \Omega_{X, 0}\right)
\end{gather*}
$$

where D_{P} and D_{A} are respectively Poincaré and Alexander duality. Now for

$$
\begin{aligned}
& \gamma \in H_{2}\left(\Omega_{X}, \mathbb{Q}\right), f_{*}(\gamma) \\
&=0 \Leftrightarrow k_{0}^{*} \circ D_{P}(\gamma)=0 \\
& \Leftrightarrow \int_{k_{0 . *}(\alpha)} D_{P}(\gamma)=0 \quad \text { for all } \alpha \in H_{2}(\Sigma, \mathbb{Q}) \\
& \Leftrightarrow\left(\gamma \cdot k_{0, *}(\alpha)\right)_{\Omega_{x}}=0 \quad \text { for all } \alpha \in H_{2}(\Sigma, \mathbb{Q}) .
\end{aligned}
$$

Now recall the Lefschetz $(1,1)$ theorem which states that $H^{1,1}\left(\Omega_{X}, \mathbb{Z}\right)$ is generated by the fundamental classes of algebraic curves in Ω_{X}. We introduce the following notation:
(5.8) Definition:
(i) The transcendental cohomology, $H_{T}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$, is given by: $H_{T}^{2}\left(\Omega_{X}, \mathbb{Q}\right)=\left\{\gamma \in H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \mid \gamma \wedge H^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)=0\right\}$.
(ii) $H_{\Sigma}^{2}\left(\Omega_{X}, \mathbb{Q}\right)=D_{P}\left(H_{2}\left(\Omega_{X}, \mathbb{Q}\right)_{\Sigma}\right)$.
(5.9) Corollary: $H_{T}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \subset H_{\Sigma}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$.

Proof: Compare (5.6) to (5.8)(i).
According to (5.9), it is clear that one can formulate a version of (5.3) for cocycles in $H_{T}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$, however there is another subspace in $H_{\Sigma}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$ which contains $H_{T}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$ and best suits our purposes. Recall the definition of $H_{A}^{1.1}\left(\Omega_{X}, \mathbb{Q}\right)$ in (0.3). There is an equivalent definition of $H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)$ using the notation in the proof of (5.5) and the Lefschetz $(1,1)$ Theorem.
(5.10) Definition:
(i) $H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)=\left\{\begin{array}{l|l}\text { algebraic cocycles } & \begin{array}{l}\text { a horizontal } \\ \gamma \in H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \\ \text { deformation of } \gamma \text { in } \\ \coprod_{v \in \Delta} H^{2}\left(\Omega_{X_{V}}, \mathbb{Q}\right) \text { is } \\ \text { algebraic }\end{array}\end{array}\right\}$.
(ii) $H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)=\left\{\gamma \in H^{2}\left(\Omega_{X}, \mathbb{Q}\right) \mid \gamma \wedge H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)=0\right\}$.
(5.11) Remarks: From the general theory of Hilbert schemes, $H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)$ is independent of the choice of polydisk $\Delta \subset U_{0}$, $\operatorname{dim} H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)$ is constant over $v \in U_{0}$, and $H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)=$ $H^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)$ for transcendentally generic X.
(5.12) Proposition: $H_{T}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \subset H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \subset H_{\Sigma}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$.

Proof: The inclusion $H_{T}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \subset H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$ is obvious from the definitions, moreover is an equality for transcendentally generic X ((5.11)). Next as X varies, i.e. $v \in U_{0}$ varies, Σ also varies algebraically, hence $[\Sigma] \in H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)$, therefore the second inclusion follows from (5.6), (5.8)(ii)\&(5.10)(ii).

(5.13) Remarks:

(i) The well known properties of the pairing $H^{2}\left(\Omega_{X}, \mathbb{C}\right) \times H^{2}\left(\Omega_{X}, \mathbb{C}\right)$ $\rightarrow \mathbb{C}$ imply $H^{2}\left(\Omega_{X}, \mathbb{Q}\right)=H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \oplus H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)$ is an orthogonal decomposition under \wedge.
(ii) As X varies, i.e. $v \in U_{0}$ varies, the incidence correspondence $D \subset \Omega_{X} \times \Omega_{X}$ also varies algebraically. Therefore $i\left(H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)\right) \subset$ $H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)$.

We need the following:

$$
\begin{equation*}
\text { Lemma: } \Phi_{*}\left(H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)\right) \subset \operatorname{Prim}^{4}(X, \mathbb{Q}) \tag{5.14}
\end{equation*}
$$

Proof: Let H_{1}, H_{2} be generic hyperplanes in $\mathbb{P}^{5}, X_{s}=H_{1} \cap H_{2} \cap X$, $Y_{s}=X_{s} \cap \varphi(P(X))$. Note that $\left[X_{s}\right]=\omega \wedge \omega \in H^{2,2}(X, \mathbb{Z})$, and Y_{s} is a curve in $S=H_{1} \cap \varphi(P(X))$. By (3.9), Y_{s} induces a corresponding curve C_{1} in Ω_{X}, given by the formula $C_{1}=\rho_{*} \circ \varphi^{*}\left(Y_{s}\right)$. Since Y_{s} varies algebraically as X varies, clearly $\left[C_{1}\right] \in H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)$. Now let $\gamma \in H_{2}\left(\Omega_{X}, \mathbb{Q}\right)$ be given so that $D_{P}(\gamma) \in H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$. From the techniques of the proof of (5.6), it is clear that γ can be chosen to be supported on $\Omega_{X}-\operatorname{supp}\left(C_{1}\right)$. Therefore, on the cycle level, $\Phi_{*}(\gamma) \cap Y_{s}=0$, hence $\left(\Phi_{*}(\gamma) \cdot X_{s}\right)_{X}=0$. By translating this in terms of cohomology, $\Phi_{*}\left(H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)\right) \wedge \omega \wedge \omega=0$. But $\wedge \omega: H^{6}(X, \mathbb{Q}) \rightarrow H^{8}(X, \mathbb{Q})$ is an isomorphism, hence $\Phi_{*}\left(H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)\right) \wedge \omega=0$, i.e. $\Phi_{*}\left(H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)\right) \subset \operatorname{Prim}^{4}(X, \mathbb{Q})$. Q.E.D.

There is another needed result:
Lemma: Let $\gamma_{1}, \gamma_{2} \in H_{2}\left(\Omega_{X}, \mathbb{Q}\right)$. Then $\left(i \gamma_{1} \cdot \gamma_{2}\right)_{\Omega_{x}}=\left(\gamma_{1} \cdot i \gamma_{2}\right)_{\Omega_{x}}$.
Proof: Using the notation of (5.2), together with the definition of j, there is a commutative diagram:

where \tilde{j} is biregular, and g is a birational morphism. Define $\tilde{p}=p \circ g$: $\tilde{D} \rightarrow \Omega_{X}$. It is easy to verify that the correspondence defined by $\tilde{p}_{*} \circ \tilde{j}_{*} \circ \tilde{p}^{*}$ is the same as $p_{*} \circ j \circ p^{*}=D$, hence $\tilde{p}_{*} \circ \tilde{j}_{*} \circ \tilde{p}^{*}=i$. Now by applying the projection formula 3 times we have: (Note $\tilde{j}^{*}=\tilde{j}_{*}$)

$$
\begin{aligned}
\left(i \gamma_{1} \cdot \gamma_{2}\right)_{\Omega_{X}} & =\left(\tilde{p}_{*} \circ \tilde{j}_{*} \circ \tilde{p}^{*}\left(\gamma_{1}\right) \cdot \gamma_{2}\right)_{\Omega_{X}} \\
& =\left(\gamma_{1} \cdot \tilde{p}_{*} \circ \tilde{j}_{*} \circ \tilde{p}^{*}\left(\gamma_{2}\right)\right)_{\Omega_{X}} \\
& =\left(\gamma_{1} \cdot i \gamma_{2}\right)_{\Omega_{X}} .
\end{aligned}
$$

(5.17) Corollary: $i\left(H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)\right) \subset H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$.

Proof: Otherwise there exists $\gamma_{1} \in H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right), \gamma_{2} \in H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)$ such that $i\left(\gamma_{1}\right) \wedge \gamma_{2} \neq 0$. But $i\left(\gamma_{1}\right) \wedge \gamma_{2}=\gamma_{1} \wedge i\left(\gamma_{2}\right)$ by (5.15) $=0$ by (5.13), a contradiction.

We can formulate (5.3) for $H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$:
(5.18) Proposition: Given $\gamma_{1}, \gamma_{2} \in H_{2}\left(\Omega_{X}, \mathbb{Q}\right)$ with $D_{P}\left(\gamma_{1}\right), D_{P}\left(\gamma_{2}\right)$ in $H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$. Then $\left(\Phi_{*}\left(\gamma_{1}\right) \cdot \Phi_{*}\left(\gamma_{2}\right)\right)_{X}=\left(d-N_{0}\right)\left(\gamma_{1} \cdot \gamma_{2}\right)_{\Omega_{\mathrm{⿺}}}+\left(i \gamma_{1} \cdot \gamma_{2}\right)_{\Omega_{4}}$.

Proof: Use (5.3) \& (5.12).
Combining everything together so far we arrive at the final result of this section:
(5.19) Theorem. The following subspaces are the same:
(i) $S_{1}=\left\{\gamma \in H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \mid \Phi_{*}(\gamma)=0\right\}$
(ii) $S_{2}=\left\{\gamma \in H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \mid\left(d-N_{0}\right) \gamma+i(\gamma)=0\right\}$
(iii) $S_{3}=(i+119 \cdot I) H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$.

Proof: $S_{1}=S_{2}$ follows immediately from (5.18) and (5.5). Next (3.11), (5.14), (5.17) imply $S_{3} \subset S_{1}$. We first justify the claim: $\{\operatorname{ker}(i+119 \cdot I)\}$ $\cap S_{1}=0$. If $\left.\gamma \in \operatorname{ker}(i+119 \cdot I)\right\} \cap S_{1}$, then $i(\gamma)+119 \gamma=\left(d-N_{0}\right) \gamma+$ $i(\gamma)=0$, hence $\left(119-\left(d-N_{0}\right)\right) \gamma=0, \Rightarrow \gamma=0$ by (4.5), which proves the claim. Using the claim, it is clear that the homomorphism $(i+119 \cdot I)$: $S_{1} \rightarrow S_{3}$ is injective, hence an isomorphism as $S_{3} \subset S_{1}$. (5.19) now follows.

§6. A quadratic relation and the proof of the main theorem

We now attend to the proof of the main theorem ((0.6)). Let $r=d-N_{0}$, and set $Q(i)=(r I+i)(i+119 \cdot I)=i^{2}+(119+r) i+r \cdot 119 \cdot I$. We prove:
(6.1) Proposition:
(i) $Q(i): H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$ is the zero morphism.
(ii) i: $H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$ is an isomorphism.

Proof: Part (i) is an immediate consequence of (5.19). For part (ii), note that $i(\gamma)=Q(i)(\gamma)=0 \Rightarrow r \cdot 199 \gamma=0$, afortiori $\gamma=0$.
Q.E.D.

Note that for any $\gamma \in H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right), \Phi_{*}(\gamma)$ has the property that under a horizontal displacement in $\amalg_{v \in \Delta} H^{4}\left(X_{v}, \mathbb{Q}\right), \Phi_{*}(\gamma)$ is still algebraic. One concludes from the proof of (5.5) that $\Phi_{*}(\gamma) \in \mathbb{Q} \omega \wedge \omega$. Therefore $\Phi_{*}\left(H_{A}^{1.1}\left(\Omega_{X}, \mathbb{Q}\right)\right)=\mathbb{Q} \omega \wedge \omega$, hence:
(6.2) $\operatorname{Corollary:~} \Phi_{*}\left(H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)\right)=\operatorname{Prim}^{4}(X, \mathbb{Q})$.

Proof: Use the above remark, (5.5)\&(5.14).
Combining (6.2) with (5.19)\&(6.1), we arrive at our main result.
(6.3) Theorem:
(i) i respects the decomposition $H^{2}\left(\Omega_{X}, \mathbb{Q}\right)=H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \oplus$ $H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)$, moreover $i: H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$ is an isomorphism.
(ii) There is a s.e.s.:

$$
\begin{gathered}
0 \rightarrow(i+119 \cdot I) H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \rightarrow H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right) \\
\xrightarrow{\Phi_{*}} \operatorname{Prim}^{4}(X, \mathbb{Q}) \rightarrow 0 . \\
(i i i) \quad \Phi_{*}\left(H_{A}^{1,1}\left(\Omega_{X}, \mathbb{Q}\right)\right)=\mathbb{Q} \omega \wedge \omega .
\end{gathered}
$$

(6.4) Corollary: The diagram below:

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{P}}^{2}\left(\Omega_{\mathrm{x}}, \mathbb{Q}\right) \xrightarrow{\Phi_{*}} \operatorname{Prim}^{4}(\mathrm{X}, \mathbb{Q}) \\
& i \downarrow \\
& \downarrow \times 119 \\
& \mathrm{H}^{2}\left(\Omega_{\mathrm{X}}, \mathbb{Q}\right) \xrightarrow{\Phi_{*}} \operatorname{Prim}^{4}(\mathrm{X}, \mathbb{Q})
\end{aligned}
$$

is sign commutative.

Proof: Let $\gamma \in H_{P}^{2}\left(\Omega_{X}, \mathbb{Q}\right)$. Then $(i+119 \cdot I) \gamma \in \operatorname{ker} \Phi_{*}$, hence $\Phi_{*}(i \gamma)$ $+119 \Phi_{*}(\gamma)=0$, which proves (6.4).

References

[1] W. Barth and A. Van de Ven: Fano-varieties of lines on hypersurfaces. Arch. Math. 31 (1978).
[2] S. Bloch and Murre, J.P.: On the Chow groups of certain types of Fano threefolds, Compositio Mathematica 39 (1979) 47-105.
[3] M.J. Greenberg: Lectures on algebraic topology, Mathematics Lecture Note Series. W.A. Benjamin, Inc. (1967).
[4] J. Lewis: The Hodge conjecture for a certain class of fourfolds. To appear.
[5] D. Mumford: Algebraic Geometry. I. Complex Projective Varieties, Springer-Verlag, Berlin-Heidelberg-New York (1976).
[6] A.N. Tyurin, Five lectures on three-dimensional varieties, Russian math. Surveys 27 (1972) 1-53.
[7] R.O. Wells Jr.: Differential Analysis on Complex Manifolds, Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1973).
(Oblatum 5-X-1983)

Assistant Professor

Department of Mathematics
University of Saskatchewan
Saskatoon, Saskatchewan
Canada S7N 0W0

