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1. Introduction

The aim of this article is prove that in some large and natural classes of
singular varieties a "good" moduli theory exists. It is well understood
that even for smooth surfaces one cannot expect a good moduli theory,
unless one endows the varieties with some projective data. It seems that
the concept of polarization (i.e. declaring some ample divisor dis-

tinguished) is the right concept to remedy the situation. A short discus-
sion is given in [M-F] Ch. 5 §1. Therefore in the sequel I shall consider
polarized varieties.

The main results will be that for certain classes of varieties a moduli

space exists which is a separated algebraic space of finite type. It is well
understood how to construct moduli spaces that are algebraic spaces. The
only problem is to guarantee that they are separated and of finite type.
These will follow once one can answer the following two geometric
questions:

Uniqueness of specializations: Given a family of varieties over the
punctured disc, under what restrictions will it have at most one extension
to a family over the disc?

Boundedness: Given a class of varieties, when can they be parame-
trized (not necessarily in a 1-1 way) by a scheme of finite type?

Chapter two is devoted to the question of boundedness. The main
result is that polarized surfaces with given Hilbert polynomial form a
bounded family (Theorem 2.1.2). For smooth surfaces this was proved by
Matsusaka-Mumford [M-M] and for normal ones by Matsusaka [M4].
The general result yields boundedness for normal polarized threefolds
(Theorem 2.1.3).

Uniqueness of specializations is considered in Chapter three. After
some general remarks three different cases are discussed: irregular varie-
ties (3.2), rational singularities (3.3) and "minimal" singularities (3.4): A
singularity is minimal if it is Cohen-Macaulay, its multiplicity is the
smallest possible, and the tangent cone is reduced. Their theory is

developed in greater detail than is strictly necessary for the applications
in Chapter four, but they seem to be of some independent interest.

The results of previous chapters are translated into statements about
moduli spaces in Chapter four. The Main Theorem (Theorem 4.2.1) is in
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fact seven separate theorems put together concerning existence of moduli
spaces under various conditions. For instance: normal, polarized, irregu-
lar, non-ruled surfaces have a moduli space which is a separated algebraic
space of finite type. It is interesting to remark that for regular surfaces
separatedness fails (examples 4.3.2-3). Another example shows that in
general our methods lead to honest algebraic spaces (i.e. not schemes).

The end (or lack) of a proof will be denoted by 0.

The present article is an essentially unchanged version of part one of
my doctoral dissertation completed under the supervision of Prof. T.
Matsusaka. 1 am deeply indebted to him for his guidance and support.

Financial assistance was provided by Brandeis University and by
IBM.

II. Boundedness of polarized surfaces

§2.1 Statement of the Main Theorem

DEFINITION 2.1.1: 

(i) By a surface we mean a reduced, purely 2-dimensional, projective
scheme over an algebraically closed field.

(ii) A pair (V, X) is called a polarized variety if V is a projective
variety and X an ample Cartier divisor on V. Then ~(s) = ~(V, X,
s ) = ~(V, sX) is called the Hilbert polynomial of ( h, X).

(iii) A family of polarized varieties «Vx, X03BB): 03BB~039B} is called

bounded, if there exists a map f : A - B between varieties and an

f ample Cartier divisor Y on A such that every (V03BB, Xx) is isomorphic to
some (f-1(b), Y|f-1(b)) for some b~B. If the Hilbert polynomials of
(V03BB, Xx) are all the same, this is equivalent to the statement that for
some fixed s OV03BB(sX03BB) is very ample on Vx for all À Fm A.

The aim of this chapter is to prove the following:

THEOREM 2.1.2: The family of polarized surfaces with fixed Hilbert poly-
nomial is bounded ( arbitrary characteristic).

In the last section we shall deduce the following two theorems as
corollaries:

THEOREM 2.1.3: The family of polarized normal 3-folds with fixed Hilbert
polynomial is bounded ( char. 0 only ). In fact it is sufficient to know the two
highest coefficients of the Hilbert polynomial.

To formulate our result in characteristic p we need a definition:

DEFINITION 2.1.4: Let {(V03BB, X03BB): 03BB~039B} be a family of polarized
varieties. A subset 1 c A is called a connected component of A, if it is
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closed under generalization and specialization over local rings and
minimal among subsets satisfying this property (we exclude 03A3 = ~).

THEOREM 2.1.5: In the family of non-singular polarized 3-folds every
connected component is bounded.

Our starting point is the following result of Matsusaka:

THEOREM 2.1.6: [M4] Let (V, X) be a normal polarized variety. Assume
that h0(sX)  ( X n/n ! ) s n - C sn-l. Then there is an so depending only on
X n and C that for s  s0 1 sX | contains a reduced, irreducible divisor W.

This allows one to reduce the problem to lower dimensions, but W
need not be normal. Still this allowed Matsusaka to conclude:

THEOREM 2.1.7: [M4] The family of normal polarized surfaces with fixed
Hilbert polynomial is bounded ( arbitrary characteristic). 0

Our method of proving Theorem 2.1.2 will be to normalize the surface
and analyze the conductor sufficiently to conclude boundedness. This
will be carried out in section 5. In the preceeding sections auxiliary
results will be discussed, some of which are probably well known, but we
don’t know of any convenient reference. Finally in the last section we
derive the corollaries.

REMARK: 2.1.8: There is one unpleasant feature of polarization for

singular varieties. Namely, if (V, X) is a polarized variety and V - % a
specialization of V, then X might not specialize to a Cartier divisor Xo.
But it can happen that mX specializes to an ample Cartier divisor mXo
on Va. It would be natural to include these limits in the moduli space. As
a first step one would need boundedness. In general we might run into
trouble: Let (V, X) be a normal polarized surface, q(V) = 0. Let ~m:
V - p N be the embedding given by |mX| ( m » 0). We can deform V to
a cone over a hyperplane section, to get a ruled surface Vm, with a
singular vertex. mX will specialize to a Cartier divisor on Tlm (the
hyperplane section), but the Vm clearly form a non-bounded family.

There are some indications that such bad behaviour does not occur in

general. For instance it cannot happen for normal subvarieties of Abelian
varieties.

Note 2.1.9: Since this article has been written, Matsusaka succeeded in
generalizing his results considerably. The full scope of this is not yet
clear, but our Theorem 2.1.3 appears to be a special case of his results. So
the original simple proof of Theorem 2.1.7 will probably never appear.
Using the (rather easy) fact that irreducible curves with fixed pa from a
bounded family one can get it along the lines of section 2.6.
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§2.2 Conductors of S2 rings

Our standard reference to commulative algebra is the book of Matsumura
[M.H], which can be consulted for all definitions.

CONVENTION 2.2.1: In this section all rings are supposed to have the
following properties:

(i) reduced, noetherian;
(ii) the normalization is a finitely generated module.
Actually we could get along with non-reduced rings in most cases, but

in the applications these conditions will be satisfied.

DEFINITION 2.2.2: (i) A ring R is called seminormal [Tr] if whenever
R c S is an overring such that

(a) the induced map Spec S - Spec R is a homeomorphism and
(b) R/p n R c S/p is an equality for all p E Spec S

then in fact R = S. 
_

(ii) Let R be a ring, R ~ R its normalization. The S2-ification of R,
denoted by A is the smallest ring between R and R which is S2. The
seminormalization denoted by + R is the smallest ring between R and R
which is seminormal. It always exists by [Tr].

(iii) Let R~S be a ring extension. The conductor of S over R,
Cond( S/R ) is the annihilator of the R-module S/R. One can see that it
is an ideal in R and S as well, and it is the largest such ideal.

The following lemma is very simple, but will be used repeatedly.

LEMMA 2.2.3: Let 0 - N - M - T - 0 be an exact sequence of modules.
Assume that N is S2 and codim(supp T)  2. Then the sequence splits.

PROOF: Extl(T, N) = 0 by [M.H] Theorem 28. 0

LEMMA 2.2.4: The S2-ification of a ring exists and is just  = ~htp=1 R p .

PROOF: It is just [EGA] IV.5.10.16 and 17 put together. D

LEMMA 2.2.5: Let R be an S2 ring, T an SI overring of R. Then all
associated primes of TIR and of Cond(T/R) in R have height  1.

PROOF: Let ht p  2. Then

is exact. The second term is zero by assumption, the last one by [M.H]
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Thm 28.So Hom( R/p, T/R) = 0, which proves the first statement.
Let p E Ass Cond(T/R) = Ass Ann(T/R). Then

Hom( R/p , R/Cond(T/R)) ~ 0, so Hom( R/p , T/R) ~ 0.

Hence p is contained in an associated prime of T/R, and ht p  1. ~

COROLLARY 2.2.6: With the above assumptions if R c T c R then TIR is
unmixed of height 1, Cond(T/R) is unmixed of height 1 in R and T as
well.

PROOF: Clearly neither TIR nor Cond( T/R ) can have height zero
associated primes.

Let q ~ AssT Cond( T/R ). Let p = R ~ q. So we have a monomor-
phism R /p - T/q - T/Cond(T/R). Hence p~ AssRs2.2.8Cond(T/R).
So ht p  1, and therefore ht q  1. 0

PROPOSITION 2.2.7: Let R and T as in Corollary 2.2.6 and assume that R
is seminormal. Then Cond(T/R) is reduced of pure height 1 in R and in T
as well.

PROOF: It is of pure height 1 by Corollary 2.2.6 and reduced by [Tr]
Lemma 1.3. 0

PROPOSITION 2.2.8: Let R be S2, I = Cond(R/R), p E AssR(I). Then
2 lengthRp (R/I)  lengthR p (R/I).

PROOF: We can localize everything at p and then this is just the classical
2(nQ - 03B4Q)  nQ inequality of Dedekind. (see e.g. [S] IV §11). D

COROLLARY 2.2.9 : Let R be S2, J = Cond(+R/R), p~ AssR(J). Then

2 lengthRp(R/J)  lengthRp(+R/J) + k - 1,

where k is the number of branches of R p. 0

PROPOSITION 2.2.10: Let R be a local ring, R c S an overring such that the
inclusion is an isomorphism outside the maximal ideal. Let I = Cond(S/R).
Then lengthR(R/I)  lengthR(S/R)2.

PROOF: Let t1, ..., tg be a minimal generating set for S/R. Then

I = ~ Ann(~ti~),
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and

lengthR (Rj Ann( (ti ») = lengthR(~tl~) lengthR(S/R).

Since g  length R (SIR) we get

lengthR(R/I) lengthR(S/R)2. D

PROPOSITION 2.2.11: Let R be a finitely generated, 2-dimensional reduced
S2 algebra over an algebraically closed field. Then its seminormalization

+ R is S2 again.

PROOF: Let S be the S2-ification of + R . Then +R ~ S is an isomorphism
in codim 1, and since at closed points no residue field extension can
occur, either + R = S, or Spec S - Spec + R is not a homeomorphism; i.e.
two closed points are "pinched together". But Spec R and Spec + Rare
homeomorphic, and an S2 surface can not have closed points "pinched
together" by a result of Hartshorne [H]. D

REMARK 2.2.12: (i) In fact for seminormal surfaces S2 is equivalent to not
having points "pinched together".

(ii) It is reasonable to ask if the seminormalization of an S2 ring is S2
or not. The problem is that in char p seminormality is not a topological
notion. Therefore an argument as above will not work.

Acknowledgement 2.2.13: My original version of this section was more
complicated and less general. The present form was worked out following
suggestions of D. Eisenbud. The proofs of 2.2.5 and 2.2.6 are due to him.

§2.3 Sheaves with many sections

DEFINITION 2.3.1: Let X be a quasiprojective scheme, U ~ X an open
set, 59:’ a sheaf on X. We say that F has many sections over U iff the

following two conditions hold:
(i) For any two distinct closed points p, q E U

(ii) For any closed p e U

We shall say that 5?7 has many sections if it has many sections over
U = X.
The following lemma lists basic properties of the notion.

LEMMA 2.3.2: (i) Let Z c X a closed subscheme, U c X open, 397 a sheaf
on Z. Then F has many sections over U (as a sheaf over X) iff F has
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many sections over U ~ Z. So the statement "has many sections " makes
sense without specifying which scheme we have in mind.

(ii) A linebundle on a reduced scheme has many sections iff it is very

ample.
(iii) If 0 ~ F ~ J ~ X ~ 0 is exact, F and Yt have many sections

and H1(F) = 0 then 9 has many sections as well.
(iv) Let X be a scheme, 1 an ideal sheaf. Let J be another ideal sheaf

such that J c I 2 and suppOX/I = suppOX/J = Z. Finally, let 2 be a

locally free sheaf on X. If J 0 Y has many sections over U = X - Z,
(0X/J) ~J has many sections and H1(X, J 0 2) = 0, then 2 has many
sections.

PROOF: Straightforward and easy. We remark that in (iv) J c I2 is

necessary to assure that the second order behavior of 2 at Z is

controlled by (OX/J)~J alone, since we don’t know much about

sections of J 0 Y at Z. ~

LEMMA 2.3.3: Let «Vx, Xx, F03BB): 03BB E 039B} be a bounded family of
polarized varieties and a sheaf on them. There exists an so, such that for
s  SO, F03BB ~ (9(sXx) has many sections and H1(VÀ, F03BB ~ (9(sXx» = 0 for
all 03BB ~ 039B. 1:1

The following lemma will allow us to get down from the normalization
to the variety in some cases.

LEMMA 2.3.4: Let 7r: V - U a finite, birational map, I c OV an ideal
sheaf such that I c Cond(V/U) (so I is an ideal sheaf on U as well). Let
,5z’u be a coherent sheaf on U, Fv = 03C0*Fu. Then

Hi(U, I~UFu)~Hi(V, I~VFv).

PROOF: Let {Ui} be an affine cover of U, {Vi = 17 U, 1 be that of V. We
compute the Cech complex of the sheaves. For Vl we get

(since Iv = Iul) and this is just the corresponding group over U. So the
Cech complexes are the same, hence the cohomologies agree. 1:1

The following theorem is the cornerstone of the proof in this chapter.
It will be referred to as the "Conductor Principle".

THEOREM 2.3.5 : Let {(U03BB, Xx): À E 039B} be a family of polarized varieties.
Assume that for each À E 039B we have a variety Vx, a finite birational map
03C003BB: V03BB ~ UÀ, an ideal sheaf JÀ c (9 v,, such that J’A c Cond(VÀ/UÀ). Let
CÀ = Spec«9ulJx), DÀ = Spec«(9vÀ/JÀ). Assume furthermore that «Vx,
03C0*03BB XÀ, Jx): À E 039B} is a bounded family and either
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( i ) {(C03BB; X03BB): 03BB~039B} is a bounded family; or
(ii) J03BB ~ Cond(V03BB/U03BB)2 and OC03BB~OU03BB(sX03BB) has many sections for

s  so, so independent 01 03BB.
Then {(U03BB, X03BB): 03BB~039B} is a bounded family.

PROOF: To have simpler notations we omit the index À, and denote all
pull-backs of X by X again.

First we prove that condition (i) implies (ii) if we replace the ideals J
by their squares.

Clearly (V, X, J2v) moves in a bounded family as well. Let OE = OU/J2u.
We have a sequence 0 ~ Ju/J2u ~ OE ~ OC ~ 0. Now J2u = J2v, so Jul Ju2 =
’TT *( Jvl Jv2 ). Since Jv moves in a bounded family and C moves in a
bounded family, the ac modules JulJu2 move in a bounded family. So by
Lemma 2.3.3 for some so, if s  s0 then OC(sX) and (Ju/J2u) ~ OC(sX)
have many sections. Thus by (iii) of Lemma 2.3.2 OE(sX) has many
sections, and this is just condition (ii).
Now we prove that (ii) implies the required statement. We have a

sequence

We would like to apply (iv) of Lemma 2.3.2. By Lemma 2.3.4 H1(U,
Ju ~ OU(sX))=H1(V, Jv ~ Ov(sX)) and since (V, X, lu) moves in a
bounded family this group is zero for s a so.

By the same reasoning

and if p E U - C then qr is a local isomorphism around 03C0-1(p). So the
map

is the same as

Hence if Jv 0 OV(sX) has many sections over V - D, then Ju ~ OU(sX)
has many sections over U - C. But the former moves in a bounded

family; therefore Ju~OU(sX) has many sections over U - C for s 
some so.

Oc 0 tPu(sX) has many sections for s  so by assumption, so (iv) of
Lemma 2.3.2 applies and we get that Ou(sX) has many sections for some
s  so. Thus by (ii) of Lemma 2.3.2 it is very ample.



377

Since h0(U, OU(sX))h0(V, OV(sX)) the dimensions are uniformly
bounded, so |sX| embedds U into a fixed projective space P ’. If
h = dim U then the degree of the image can be bounded by shxi + h + 1
(see e.g. [L-M]) which is equal to shXhV + h + 1, so is bounded. Hence the
Ux’s are parametrized by a bounded part of the Hilbert scheme of PN,
and this was to be proved. D

§2.4 Some remarks on quot schemes

DEFINITION 2.4.2: (i) In this section all sheaves will be coherent over a
fixed projective space P.

(ii) If H = {X03BB: 03BB~039B}, F={F03BC: 03BC~M} are two families of
sheaves we say that F is a family of quotients of H if every t3§ is the

quotient of some X03BB.
(iii) For a sheaf W, ~(X)=~(X, s)=~(X~O(s)) will be called

the Hilbert polynomial of W. The coefficient of s’ will be denoted by
aj(X) or simply aj.

(iv) A family of sheaves H = {X03BB: 03BB~ 039B} will be called bounded, if
there is a quasi-projective scheme X and a sheaf Je on X X P such that
each Ax is isomorphic to some X~ OPx, where Px denotes the fibre of
pr2 over x E X. 

(v) a family of sheaves F={F03BC: 03BC~M} is called x-bounded if

{~(F03BC): 03BC~M} is a finite set of polynomials.
The following is just a re-formulation of a theorem of Grothendieck:

THEOREM 2.4.2: [G1] Let H be a bounded family of sheaves, F be a
X-bounded family of quotients. Then F is bounded. ~

Now we shall prove two statements that follow easily from the results
and methods of [Gl] but are not mentioned there.

CONVENTION 2.4.3: ~(a, b, ... ) will stand for some function which

depends only on the variables explicity listed. Whenever we write 0 in a
statement it means that there is a function for which the statement is
true.

LEMMA 2.4.4: Let H be a bounded family, F the family of quotients, F~ F,
~(F)= 03A3aisi. Then aj~(aN,..., aj+1, H).

PROOF : By taking generic hyperplane sections we can reduce the problem
to proving a0  0(aN, .... a,, H). We prove this by induction on
dim(supp F). If it is zero, then ao à 0.

Let 0 ~ F(-1)~F~J~0. Then ai(J)=~(aN,...,a1), so if we
fix aN, ... , a1, J moves in a bounded family. Hence for s  ~(aN, ..., ai ,
H) we have Hi(J(s)) = 0, i &#x3E; 0 and so Hi(F(s)) = 0 for i &#x3E; 1.
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On the other hand, let I be the family of kernels 0 ~ 03BB03BC ~ X03BB ~ F03BC
~ 0. By doing the same induction on 1 we get Hl((s)) = 0 for

s &#x3E; ~(aN,...,a1, H) and i &#x3E; 1. from Hi(X03BB(s)) ~ H1(F03BC(s)) -
H2(03BB03BC(s)) we get that H1(F(s)) = 0 for s &#x3E; ~(aN,..., a,, H). So
x(fF, s)=H0(F(s))0; hence a0-03A3N1 aisi, which is the desired
bound. 1--l

THEOREM 2.4.5: Let H be a bounded family, F be a family of quotients.
Assume that every 3P’EE F is unmixed of pure dimension n, and an(F)  c
for some constant c. Then there exists a bounded family G of quotients of H,
such that each ge G is unmixed of pure dimension n and each F is the
quotient of some 9 for which supp 9= supp 597’.

REMARK 2.4.6: It is of course not true that 5P’ is a bounded family. The
example one should keep in mind: the family of double lines in p 3 is not
bounded, but they are all contained in one of the simplest triple lines,
given locally by ( x 2, Y2).

PROOF OF THE THEOREM: Let (F) be the ideal sheaf of supp 57. Then
OPN/(F) is reduced of pure dimension n, and deg(OPN/(F))  n! . c,
so by the theory of Chow forms ([G1]L.25), {(F): F~F} is a

bounded family. If q: X~F is a quotient map then it factors through
X~X/(F)c·X. The family {X/(F)c Je: F~ F, X~ H ) is a
bounded family, it satisfies all requirements except that these sheaves
might not be unmixed. But from [G1] Theorem 2.2 it follows that if we
take the quotient by the subsheaf generated by local sections whose
support has dimension  n, then we get a bounded family again. This is
our family G. 0

§2.5 Proof of the Main Theorem

2.5.1 Step 1 : General set-up
The local notions introduced in §2.2 (seminormalization, conductor, etc.)
glue together to global ones. So for a surface V let F, (+ V, Tl) be the
S2-ification (seminormalization, normalization). For simplicity all

pull-backs of the ample divisor X will be denoted by X again. For
geometric reasons the coefficients of ~(V, X) will be denoted by
d/2s2 - 03BE/2s + X , that of xCV, ) by /2s2 - /2s + X etc.

LEMMA 2.5.2: (i) d==+d=d.

PROOF: (i) is clear, and so is (ii) except the last inequality, which follows
from [K-M] Lemma 2.1.
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As for (iii) ~(O)=~(OV)+~(O/OV)=~(OV)+length O/OV. If
W is an S2-surface then ~(OW)h0(03C9W)+h0(OW)2+(X·K)2+1
by [L-M] Lemma 2.1.

If V’ - h is a desingularization then ~(OV’)~(OV) from the Leray
spectral sequence, and on V’ we can use [K-M] Lemma 5.2 to estimate
~(OV’) from below. D

2.5.3 Step 2 : (V, X, C) is bounded.
(V, X) is a normal surface with Hilbert polynomial d/2s2 - 03BE/2s + ~.
From Lemma 2.5.2 we see that we can bound all coefficients in terms of
(d, e, ~), so we have only finitely many possibilities for ~(V, X). We
could apply Theorem 2.1.7 of Matsusaka to conclude that ( h, X) moves
in a bounded family, but V is not necessarily irreducible. But if V = U Vi,
di, e,, X l the corresponding quantities then 03A3dl=d so we have only
finitely many possibilities. le, = e and 03BEl- 3dl  - 3d by Lemma
2.5.2 so this is again finite in number. Finally 3 + 03BE2i  ~i  ~(dl, e’) is

bounded, so the irreducible components move in a bounded family and
so does (V, X). 

_ _

Now let OC=OV/Cond(V/+V), O+C=O+V/Cond(V/+V). Using
the sequences

we get I(+C, X)-/(C, X)=(03BE-+03BE)/2, where I( , )_denotes the
intersection number. Furhermore we have I(+C, X)  I(C, X) (this is
just a global version of Proposition 2.2.8), so I(C, X)  +03BE-03BE03BE + 3d.

By Proposition 2.2.7 C is reduced, hence by the theory of Chow forms
(see e.g. [Gl] ] Lemma 2.4) the triplets (V, X, C) move in a bounded
family,. D

2.5.4 Step 3 : (+V, X) is bounded.
Using our earlier notation we again look at the sequence 0 ~ O+C ~ (9c
~ X ~ 0. Here + C and C are reduced curves by Proposition 2.2.7 and X
is unmixed of pure dimension 1 by Corollary 2.2.6. So if (9+C (resp. me)
denotes the coordinate ring of the normalization of + C (resp. C), then
O+C/O+C~OC/OC is an injection. So the singularities of + C are " not
worse" than the " sum" of the singularities of C lying above the given
point. Since C moves in a bounded family, we can estimate Pa(+ C) and
the number of components; hence + C moves in a bounded family. (This
is an easy and well-known fact, but 1 don’t know of any references. It is
of course an easy special case of the Conductor Principle: Theorem
2.3.5.)
Now we can use (i) of the Conductor Principle to conclude the

boundedness of (+V, X). D
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As a preparation for the next step, let E = 2 aiAi be a cycle on ’ V
where Ai are the multiple curves of ’ V and ai = mult( A; ) -1. It is easy
to see that the triplets (+V, X, E) move in a bounded family as well.

2.5.5 Step 4: ( v, X) is bounded.
This is the most complicated step and the higher dimensional generaliza-
tions broke down here.

Let O+D=O+V/Cond(+V/), O=OV/Cond(+V/). By Corollary
2.2.6 these are unmixed of pure dimension one. As in Step 2 we get I(,
X) - I(+D, X) = (+03BE-)/2 and Corollary 2.2.9 gives 2/(D, X)  I(+D,
X)+I(E, X). Therefore I(+D, X)03BE=3d+2I(E, X) and so it is
bounded. Now in general + D is not reduced, so we cannot conclude that
+ D moves in a bounded family, but by Theorem 2.4.5 there is a family of
curves D’, such that the triplets (+ V, X, D’) move in a bounded family
and + D is a closed subscheme of D’, satisfying supp + D = supp D’. Let
D be the image of D’ in v. Here we get 0 ~ (2D -+ (9D’ ~ O+ V/O ~ 0. In
this sequence X«9D’, X) and ~(C+V/O, X) are known up to finite
ambiguity, so X«9D, X) is bounded.

(2 D’ has a natural filtration by successive socles so let grOD’ be the
corresponding Ored D’ module. If we look at (2 D’ as an (2 D module, then
this is a filtering of aD modules so we get a sequence of Urea D modules
0 - gr (9D - gr (9D’ ~ gr 9 - 0. (gr =2 is just the quotient filtering on
O+V/OV.)
Since +V~ is a homeomorphism, red D’ - red D is an isomor-

phism at the generic points (but not necessarily an isomorphism, see
Example 2.5.7).

Let F be the ared D’ submodule of gr (9D’ generated by gr OD. Since
(2red D and (9red D, are generically equal, F/gr OD has finite length; let
this be l  0. So ~(gr OD’/F) = ~(gr O)-l = ax + b - 1. But gr (2D’
moves in a bounded family of area D’ modules and gr OD’/F is a family
of quotients, so by Lemma 2.4.4 b - 1 is bounded from below. Thus 1 is
bounded from above. Hence JF moves in a bounded family of (9red D’
modules.
Now length(Ore D’/Ored D)l, so the Conductor Principle applied to

red D shows that red D moves in a bounded family. Since length (F/gr
OD) = 1 and fF moves in a bounded family of (2red D modules as well, we
conclude that gr (9D moves in a bounded family of Ored D modules.
Now by Lemma 2.3.3 gr (9D 0 ared D(sX) has many sections for s  so,

and its H-1 is zero. So the same holds if we look at it as an (9D module by
(i) of Lemma 2.3.2. Thus a successive application of (iii) Lemma 2.3.2
gives that OD(sX) has many sections for s &#x3E; so. (Note that we can not
claim yet that (9D moves in a bounded family.)

At last we are in the situation (ii) of the Conductor Principle, so we get
that (, ) moves in a bounded family. D
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2.5.6 Step 5: ( h, X) is bounded.
Let I=Cond(/V). Then O/I is a module of finite length. Further-
more length(O/I)-length(OV/I) = -~. From Proposition 2.2.10 we
get that length(OV/I) (- X ) 2, so length(O/I)(- X ) 2 + (- X).
So 1 moves in a bounded family of O modules and the form (ii) of the
Conductor Principle applies again to finish the proof of the Main

Theorem. D

EXAMPLE 2.5.7: Let R = k[yjxi: j2, i 0, x" + nxn-2y: n  2] be a
subring of k[x, y] given by a linear basis. It is easy to check that R is
generated by its elements of degree 2, 3, and 4, so it is finitely generated.
Let S = k [ x, y]. Then Cond(S/R) = y2S so R/R ~ y2S = k[x2, X3] is a
cuspidal curve and S/y2S ~ k[x, e]. But ~: S/R ~ k[x]: ~(x) = -1,
o(y) = x is an isomorphism, so R is S2, and S is its (semi)normalization.
The reduced conductor is S in the affine line and not the cuspidal line.

§2.6 Consequences for polarized threefolds

Now we shall prove Theorem 2.1.3 and 2.1.5 together. Let (V, X) be a
polarized variety as there.

LEMMA 2.6.1: Assumptions as in those theorems. Then there exists a fixed
s, such that |sX| contains a reduced, irreducible surface W.

PROOF: Of course we want to use Theorem 2.1.6. For normal varieties in

characteristic 0 the required estimates are proved in [K-M], for character-
istic p in [M3]. D

2.6.2 Now we choose W to be general. Since ~(W, X) = ~(V, X,
t) - ~(V, X, t-s), the polarized surfaces (W, X) move in a bounded
family by Theorem 2.1.2. So for some so, |sX| is very ample on W and
h’ (W, sX) = 0 ( i &#x3E; 0) for s  so.

From 0 ~ OV((k - 1)sX) ~ OV(ksX) ~ OW(ksX) ~ 0 we deduce that
for ks &#x3E; so we have H’(V, ksX) = 0 for 1 à 2 and

is exact. For a fixed ko we get

by [L-M] Lemma 2.1.
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So for some k0  k1  k0 + N + 1 we have that H0(V, k1sX) ~ H0(W,
k1sX) is onto, and thus H0(V, k1sX) is base point free. Since W was
général 1 kl sX defines a birational map on V, and as V runs through our
family the images form a bounded family. So the family of normaliza-
tions is bounded as well, which proves our theorems, except the remark
in Theorem 2.1.3 about the two coefficients.

2.6.3 To prove this we remark that if we use the inequality

which we get from repeated use of the sequence (*) then we get bounded-
ness without using the constant term of the Hilbert polynomial.

So all we need is to estimate the linear coefficient in ~(V, X) by the
two highest ones. Let ~(V, X)=03A3dini, d0 = ~(OV). Then ~(W, X) =
(3sd3)n2 + (2sd2 - 3s2d3)n + s3d3 - S2d2 + sdl. By Lemma 2.5.2, ~(OW)
 3 + (2sd2 - 3s2d3)2 and this gives an estimate d1~(d3, d2).
To get a lower estimate let 03C0: V’ - V be a resolution, ~(V’, 03C0*X) =

03A3d’ln’. The Leray spectral sequence gives d’3 = d3, d’2 = d2 and d’1  d1.
But Lemma 5.2 in [K-M] gives d’1~(d’2, d’2), so we can bound d 1 in
terms of d3 and d2. Hence the proof of Theorem 2.1.3 is complete. D

PROPOSITION 2.6.4: The family of polarized, seminormal S2 3-folds with
fixed Hilbert polynomial is bounded.

PROOF: Let (V, X) be as above, (V, X) be the normalization, OC =
OV/Cond(V/V0, OC= OV/Cond(V/V). By Proposition 2.2.7 C and C
are reduced of pure dimension 2. As in 2.5.3 we can prove that C moves
in a bounded family. From 0 ~ (9c - tPt ~ OV/OV ~ 0 we can compute
the Hilbert polynomial of (C, X) up to finite ambiguity. Thus by
Theorem 2.1.3 we see that (C, X) moves in a bounded family. Hence we
can apply the Conductor Principle to conclude the proof of the proposi-
tion. D

III. Uniqueness of specializations

§3.1 General results

In this chapter we address the following problem: Given a family of
varieties over the punctured disc, when can this be extended in a unique
way to a family over the disc. In this generality the answer is never, so we
must restrict the possible central fibres. The first result is due to

Matsusaka-Mumford [M-M].
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THEOREM 3.1.1: [M-M] Let X* - T* be a family of smooth projective
polarized varieties. There is at most one extension of it to X - T if we
require the central fibre to be smooth and nonruled. E

Very often the extensions do not exist in this class, so it is natural to
consider certain singular central fibres. In the following sections we shall
prove theorems of this kind. But first we recall two statements that are

implicit in the mentioned article [M-M].

PROPOSITION 3.1.2: Let X* - T* be a family of projective, irreducible,
reduced polarized varieties and XI - T, X2 ~ T two extensions, Xô ( resp.
X.2) the central fibres. The identity map on X* specializes to a rational map
~: X10 ~ X02. Then, if ~ is birational, it is in fact an isomorphism.

PROOF: For a family o smooth varieties this is just Theorem 2 in [M-M].
In fact the proof given there works for normal varieties as well. To cover
the general case let Z c XI X 1X2 be the closure of the graph of the
isomorphism over the generic point. By assumption the special fibre of Z
has a decomposition Zo = ZÓ U 20 where ZÓ is the graph of the bira-
tional isomorphism ~. Let A’ be the polarizing divisor on X’, and
B = 03C0*1A1 + ff2*A 2 a relatively ample divisor on X 1 TX2. Over the

generic point of T we have I(Zt, B/n) = 2"A("), so I(Z0, B(n)0) = 2 nA (n).
But since ~(A1) = A2 it is easy to compute that I(Z’0, B(n)0) = 2nA (n). So
Zo = Ø, and hence Zo is irreducible. Now 1 claim that 03C0i: Zo - Xô are
finite. Indeed, let C c Zo be a curve such that 03C01(C) is a point. Then dim
7r2 (C) = 1, so deg 03C0*1(A10|C) = 0 whereas deg r2* (A 0 2 1 c) &#x3E; 0. But 03C0*1A10
and 7r2*A 2 are linearly equivalent since they are specialization of 03C0*1A1t ~
03C02*A2t and Pic(Z/T) is separated since the fibres are irreducible and
reduced (cf. [G2]). So 7r,: Zo - Xô are finite and birational.
Now Al0 and 03C0*iAi0 have the same Hilbert polynomial since they are

specializations of A’ 1 03C0i*Ait. So 03C0i*OZ0 = (2 Xo hence Zo is isomorphic to
Xô. Therefore Xô is isomorphic to X20 via ~. This is what we wanted to
prove. E

PROPOSITION 3.1.3: [M-M] Let 03A3 be a class of singularities, and II be a
class of varieties. Assume that whenever ~: X - T is a 1-par. deformation
of a singularity in Y- and f : X’ - X any birational regular map, E c X’ an
exceptional divisor such that X’ is smooth at the generic point of E then E
belongs to the class II.

Let 0 be the class of varieties that are not birational to any variety in II
and have all their singularities in 03A3.

Under these conditions, if X* ~ T* is a family of polarized varieties, it

has at most one extension where the central fibre is in 03A6.

PROOF: This is just a complicated formulation of the first part of
Theorem 1 in [M-M], and our Proposition 3.1.2. 1:1
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DEFINITION 3.1.4: [Mu]. A singularity X is called an insignificant limit
singularity if 2 = {X} and II = (ruled varieties} satisfy the conditions
of Proposition 3.1.3.

REMARK 3.1.5: It is proved in [M-M] that smooth points are insignificant
limit singularities.

§3.2 Irregular varieties

THEOREM 3.2.1: Let X* - T* be a family of polarized varieties. Then it

has only one extension to X - T where the central fibre is normal with

isolated singularities only, is not ruled and has positive irregularity. ( dimen-
sion of the Picard variety is positive in char. p).

PROOF: Let f 1: XI - T and f2: X2 ~ T be two such extensions. The
identity map of X* extends to a rational map ~: X1 ~ X2. Let
X c X1  TX2 be the graph of ~, 4,’: X ~ X the projections. Let Xô be
the central fibre of X i and E = (03C82)-1X20. Then ~0: Xl - X02 is bira-
tional iff 03C81(E) = xci. At any rate 03C81(E) c xci. If dim 03C81(E) &#x3E; 0 then its

generic point dominates a smooth point of XI, so by Remark 3.1.5 E is
ruled. But E is birational to 0 a contradiction.

If dim 03C81(E) = 0 then we first consider the case of char. 0. Then by
[G2] the relative Albanese maps exist: a’ : Xi ~ Alb(Xi/T). For abelian
schemes specialization is unique, so Alb(XI/T)= Alb(X2/T). Now
al o ipl(E) is a point, but a2 . 0/2(E) = 03B12(X20) has positive dimension so
they cannot be equal, a contradiction.

In characteristic p we proceed as follows. Let Pic° X 1/T (resp.
Pico X2/T) be the connected components of the Picard schemes. These
are projective group schemes but might not be smooth. But by Koizumi
[K.S] there are abelian schemes A’IT and maps ~i: Ai/T -+ PicoXi/T
such that over the generic fibre ~i is an isomorphism onto the reduced
induced subvariety of Pico Xi/Te Now AI/T and A2/T are abelian
schemes, isomorphic over the generic point, so they are isomorphic.

Let Pi denote the Poincaré bundle on Xi/T T Pic°(Xi/T). Let
~*Pi denote its pull-back to Xi/T X TAi/T. This ~*Pi defines a map a’ :
xi/T-+ Pic’(A’. / T). But since AI/T=A2/T the targets of al and a2
are the same. Once we have these substitutes for the Albanese map the

proof,is the same as in char. 0. 0

We remark that this proof works in mixed characteristic as well.

REMARK 3.2.2: In the applications it is sometimes necessary to weaken
the assumption that the singularities are isolated. For instance, if we

assume that a general hyperplane section of the central fibre has only
insignificant singularities, then the present proof applies verbatim.
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§3.3 Rational singularities

PROPOSITION 3.3.1 : The classes E = {rational singularities} and Il =

{ varieties X, such that for a smooth projective model X’ we have H0(X’,
03C9X’) = 01 satisfy the conditions of Proposition 3.1.3. (Only in char. 0).
We shall prove a more general statement but first we need a definition.

DEFINITION 3.3.2: Let y E Y be a normal singularity, dim Y = n. Let f :
Y’ ~ Y be a resolution. Then R n- lf.(9y, is a skyscraper sheaf at y. Its
length will be denoted by Pa (y, Y) or just Pa (y). This is independent of
f (at least in char. 0).

LEMMA 3.3.3: Let y E Y be as in the definition. Assume that Y - y has
rational singularities only. Then the natural map f*03C9y’ - wy is an isomor-

phism outside y, and the length of the cokernel is pa ( y, Y).

PROOF: Let E = r1(y). We have the following diagram

Here H0y(03C9Y)=H1y(03C9Y)=0 since 03C9Y is S2, so c is an isomorphism.
H0E(03C9Y’) = 0 since 03C9Y’ is torsion-free and H1(Y’, 03C9Y’) = 0 by
Grauert-Riemenschneider vanishing [G-R]. We are interested in coker a,
which is just H1E(03C9Y’) (easy diagram chasing). By [SGAII] II.6, H1E(03C9Y’)
= lim  Ext1(OnE, 03C9Y’). This is dual to lim  Hn-1(Y’, OnE) by Serre
duality (both groups are of finite length, so the limits commute with
duality). By the Formal Function Theorem this latter group is just
Rn-1f*OY’, which proves the lemma. 0

Now we can formulate our promised generalization of Proposition 3.3.1.

THEOREM 3.3.4: Let y E Y0 be a normal singularity, rational outside y. Let
Y0  Y be a 1-parameter deformation of Yo, 1: Y’ -+ Y a resolution,
E c Y’ a smooth exceptional divisor such that f(E) = y. Then H0(E,
03C9E)pa(y, Y0).

PROOF : Further blowing-up Y’ we may assume that the total trans-
form YÓ of Y0 is nonsingular. Let the deformation be 03C0: Y ~ T, T = Spec
R, Y0 = 03C0-1(0). Let Z = rI 0 03C0-1(0). So both E and Y’0 are components
of Z. From 0 ~ 03C9Y’ ~ 03C9Y’(E) ~ CJJE -+ 0 we get 0 ~ f*03C9Y’ ~ f*03C9Y’(E) ~
H0(03C9E) ~ R1f*03C9Y’ = 0, the latter by [G-R]. Now both f*03C9Y’ and
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f*03C9Y’(E) are torsion-free sheaves, equal to 03C9Y outside a codimension two
set, so their double duals are all the same. But a)* = 03C9Y since it is S2, so
we get natural injections f,,w y, ~ f*03C9Y’(E) ~ 03C9Y. Let Q = 03C9Y/f*03C9Y’ as
an R-module; then H0(03C9E) is a submodule of Q, supported at 0 E T.
Now let t~R be a local parameter. Then cjy 0 R/t = 03C9Y0 and im[f*03C9 y,

~R/t~03C9Y~R/t] contains im[f*03C9Y’0 ~ 03C9Y0] 1 by ([E1] diagram on p.
146). So length (Q 0 R/t)  length (03C9Y0/f*03C9Y’0)  pa(y, Yo ). Now
H°(wE) is a submodule of Q, supported at 0 E T. Moreover, from the
definition it is clear that multiplication by t is trivial on H0(03C9E), so it is
contained in the socle of Q. We saw that Q is a direct sum of at most
Pa(Y, Y0) cyclic modules (since over a discrete valuation ring any
coherent module is such), so its socle is at most Pa(Y, Yo ) dimensional.
This proves the theorem. D

§3.4 Singularities with minimal multiplicities

DEFINITION 3.4.1: We shall call a singularity (x, X) minimal if it is

reduced, Cohen-Macaulay, multxX = emdimxX - dimxX + 1 and the

tangent cone of X at x is geometrically reduced.

REMARK 3.4.2: In general multxX  emdimxX - dimxX + 1 for Cohen-
Macaulay singularities, hence the name "minimal".

LEMMA 3.4.3: ( i ) A curve singularity is minimal iff it has smooth branches
with independent tangencies.

(ii) Let x E X be a singularity, x E H a hyperplane section. Then
( a ) if x E H is minimal, so is x E X;
( b ) if x ~ X is minimal and H is general then x E H is minimal;
(iii) A scheme Y with minimal singularities is seminormal (see 2.2.2.

(i) ).

PROOF: (i) and (ii) are straightforward. To prove (iii) let f : Y’ - Y be a
finite homeomorphism. If dim Y = 1 then Y has seminormal singularities
by (i), so f is an isomorphism. If dim Y &#x3E; 1 let H c Y be a general
hyperplane section through a point y E Y. Then y E H is minimal by
(ii/a) so f is an isomorphism above H at y. Thus f is an isomorphism at
y. 0

THEOREM 3.4.4: Let f : X - T be a flat deformation of Xo over the

spectrum of a DVR. If Xo has only minimal singularities then the general
fibre, Xt, has only minimal singularities as well.

PROOF: The problem is clearly local on Xo. Assume that we know the
statement for dim Xo = 1. Then by a generic projection we can view X as
a family of curves over An-1T, such that the central fibre has minimal
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singularities by Lemma 3.4.3 (ii/a). So by the assumption all fibres have
minimal singularities. Therefore by Lemma 3.4.3 (ii/b) Xt has minimal
singularities.
Now to prove the curve case first 1 claim that X is seminormal.

Indeed, let f : X’ - X be a finite homeomorphism. The locus where f is
not an isomorphism is closed and does not intersect Xo, so it must be
empty. Hence X is seminormal.

This implies that Xt is seminormal. Indeed, if ft: XJ - Xt is a

homeomorphism then ft: XJ - X is quasi-finite, so it can be factored as
i f

X; à X’ à X, i an open immersion and f finite. If z E Xo is a nonclosed

point then z E X is regular, so by Zariski connectedness f is a homeo-
morphism above z. If x ~ Xo is closed and f-1(x) is not a single point,
then the completion of X at x has at least two components meeting at x
only. So by Hartshorne [H] it is not S2, which is a contradiction. So f :
X’ ~ X is a homeomorphism and therefore an isomorphism by the
previous claim; hence Xt is seminormal.
Now we are nearly done. Indeed, by a result of Davis ([D], especially

Corollary 4) if Y is a curve defined over L, and Y~LK is seminormal
for all finite extensions L c K then Y is minimal. By changing our T
suitably we get the required property for Xt, so Xt has minimal singulari-
ties. 0

Note that over a field of characteristic zero the base change is not
necessary. In the case where the residue characteristic of T is zero we
could have used [B-G] Proposition 7.2.6.

COROLLARY 3.4.5: ( of proof ) Minimality is an open condition. ~

The following statement is a combination of results of Sally [S.J.] and
classical results (see e.g. [X]).

PROPOSITION 3.4.6: Let x E X be a minimal singularity. Then the projecti-
vized tangent cone has only minimal singularities and rational components.

PROOF: By [S.J] 03A3 mlx/ml+1x (mx: ideal of x ~ X) is Cohen-Macaulay
and has the same multiplicity and embedding dimension as x E X. Its
tangent cone is itself, so it is minimal. Its proj is the projectivized tangent
cone, so Corollary 3.4.5 implies that it has only minimal singularities.
Furthermore it is a variety of minimal degree in P ", hence its irreducible
components are all rational (see e.g. [X]). 0

COROLLARY 3.4.7: Let V ~ Pn be a reduced nondegenerate variety of
minimal degree, connected in codimension 1. If ( x, X) is a small deforma-
tion of the vertex of the cone over V then (x, X) is minimal. Conversely,
every minimal singularity arises this way.
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PROOF: By Xambo [X] V is arithmetically Cohen-Macaulay, so we have
the first statement by Theorem 3.4.4. Since every singularity deforms to
its tangent cone, Proposition 3.4.6 implies the converse. D

COROLLARY 3.4.8: Let x E X be a minimal singularity and let Bx X be the
blow up. Then BxX has minimal singularities only and all exceptional
divisors are rational.

PROOF: Let T c Bx X be the exceptional divisor: It is just the projecti-
vized tangent cone, so T has minimal singularities by Proposition 3.4.6
and so Bx X has minimal singularities by Lemma 3.4.3 (ii) and Corollary
3.4.5. D

THEOREM 3.4.9: The normalization of a minimal singularity is minimal

again. A normal minimal singularity is rational. ( Characteristic zero only).

PROOF: My proof of the first statement is rather complicated. Since 1

think that a simple proof should exist and the statement shall not be used
in the sequel, only the second part will be proved here.

Since a singularity is rational if a hyperplane section of it is rational
(Elkik, [El]), it is sufficient to prove the second statement for surfaces.
We do induction on the number of blow-ups that are needed to resolve
the singularity. Let x E X be normal, minimal, dim X = 2. Then Bx X
has minimal singularities by Corollary 3.4.8 and is normal outside the
singularities of the exceptional divisor T, hence normal. Hence B., X has
rational singularities by induction. So all we need is that R103C3*OBxX = 0.
By the Formal Function Theorem this is just lim-+H1(T, OBx X/Ik),
where I is the ideal of T. Now T is just a connected curve of minimal
degree in Pn and I/I2 ~ C9T(l). So we get short exact sequences 0 -
(9T(n) - OBxX/In+1 ~ OBxX/In ~ 0. Taking cohomology we see that all
we need is that H1(T, (9 (k» = 0 for k  0. Now T ~ Pn is 2-regular (see
[S.P] for the definition and the result) so H1(T, O(k)) = 0 for k &#x3E; 0.

H’ ( T, O) = 0 is readily computable from the normalization. This finishes
the proof of the theorem. D

REMARK 3.4.10: It is not difficult to see that a rational surface singularity
is minimal iff the fundamental cycle (cf. [Al]) is reduced.
Now we come to the main theorem of this section, but first we need a

definition.

DEFINITION 3.4.11: A variety E will be called a relative Severi-Brauer
variety, if there exists a rational map 03C0: E - X such that the fibre of qr

over the generic point of X is birational to a Severi-Brauer variety (i.e.
after a separable base field extension becomes birational to p k , k  1).
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THEOREM 3.4.12: Let X be a scheme with minimal singularities 03C01: Z - X

a birational map, E c Z an exceptional divisor, Z normal. Then E is a
relative Severi-Brauer variety.

PROOF: Let Xl = X. If we have 03C0l: Z ~ Xl and 03C0l(E) is a closed point
x, E X, then let Xl+1 be the blow-up of x,, 03C0l+1: Z ~ Xl+1 resulting
map. Then for some k  1 03C0k(E)~Xk is not closed. The proof of this is
postponed until the end of the argument.

By Corollary 3.4.8 Xk has minimal singularities. If dim uk(E) = dim
Xk - 1 then 77k(E) is an exceptional divisor of Xk ~ Xk-1, hence rational
by Corollary 3.4.8. But E is birational to 03C0k(E) since Xk is smooth at

the generic point of ’TT k ( E), hence E is rational. If dim 03C0k(E)dim
Xk - 1 then we can localize at 03C0k(E) and by induction on dim Xk we get
that the generic fibre of E ~ 03C0k(E) is a relative Severi-Brauer variety.
This proves the theorem. D

What remains is to see that the process of blowing-up stops in finitely
many steps. This is probably not new. 1 worked out the following proof
following some suggestions of M. Spivakovsky.

PROPOSITION 3.4.13: Let R o be a complete local ring, v a discrete rank 1
valuation centered at m R. We blow up m R and obtain the scheme BR o. If
the centre of v on BRo is closed then let RI be its local ring. Iterating this
we get R 2, R3, .... We claim that this sequence is finite, i.e. for some k the
centre of v on BRk is not closed.

PROOF: Let t be a local parameter for v and let k c R o denote either the
residue field of R o or the Witt vectors over the residue field. Let

X, = th/vI (v(vl) = 0) be a generating set for mR. We perform a k-linear
change on the set ( x, ) such that for the resulting basis zl = talwl the

sequence a1  a2  ... is lexicographically the largest possible (i.e. first
maximize a1, then a2, then a3 ... ) If a1 = a2 = ... = ai ~ a, + 1 then after
blowing-up we get the ring

We claim that the centre of v is not closed. Indeed, if it is, then for some

c ~ k, wj/w1 - c = tw’ for some 2  j  i. But then

So we may assume al  a2. Now we keep blowing-up until we reach the
point where al is the smallest possible. Again let Zi = ta¡WI denote a
system of generators. Here we normalize {zl} using k[[z1]] linear expres-
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sions. (Note that since al  a2 zl is unique). Now at each blow-up a2
gets smaller, until at one point we get a2 = 2a1. In the next blow-up we
get

We are in the situation considered earlier except that we might not have a
lexicographically maximal sequence a1  a1  a3 - a1  .... But 1 claim
that this problem cannot rise. Indeed, if

contradicting the fact that al  a2  ... was a lexicographically maximal
sequence for k[[z1]] linear coordinate changes. So after one more blow-up
the centre of v will not be closed. 0

REMARK 3.4.14: We could expect something similar to hold if (x, X) is a
Gorenstein singularity with multxX = emdimxX - dimxX + 2 and re-

duced tangent cone. But here in general we can run into trouble-e.g. if
the tangent cone is a cuspidal cubic. So let us define a minimal Goren-
stein singularity by requiring the above conditions and the following: If
we cut down (x, X) to a surface singularity by a general linear section
then we get either a simple elliptic or a cusp singularity (for definitions
see e.g. [S.K], [Ka]).

Then if x E X has a minimal Gorenstein singularity and f : Z - X is a
birational map, E c Z an exceptional divisor then E is covered by
elliptic curves. If dim X  3 and X is nonsingular in codimension two,
then E is uniruled.

This can be proved as in the case of minimal singularities with two
changes:

(i) In some cases instead of a blow-up a weighted blow-up should be
used.

(ii) We can get some singularities with nonreduced tangent cones in
. the process. These should be taken care of with ad hoc methods.

These make the proof rather cumbersome. Since the main idea is the
same as earlier, and the above changes are explained carefully in [Rll],
[S-B], [Sh] in a similar context we do not give the proof here.

IV. Construction of moduli spaces

§4.1 Generalities

In this chapter we will use the theorems we proved so far to construct
some moduli spaces. We proceed in the usual way: given a family of
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polarized varieties we embed them into a big projective space via a large
multiple of the polarizing line bundle. The images will be parametrized
by a subset of the Hilbert scheme. Then we want to take the quotient by
the equivalence relation "isomorphism". To do this we need some

quotient theorem. The following one is more or less a special case of a
result of Artin [A3] 6.3 Corollary. The present formulation is taken from
[M-F] p. 172 with slight modifications.

THEOREM 4.1.1: Let H be a separated scheme ( or algebraic space) of finite
type, and let f : R - H X H a map. Assume that

( i ) f(R) c H X H is an equivalence relation,
( ii ) prl  f : R - H are smooth,

( iii ) f is proper,
( iv ) 1 as a. map into its image is equidimensional and for every h E H fh :

R Hh~H {h} is smooth onto its image.
Then H/R is represented by a separated algebraic space of finite type.

PROOF: Compared to the proof in [M-F] p. 172 the only change is that
there instead of (iv) it is assumed that f is finite and unramified, and the
fibres of prl : f(R) ~ H are smooth. If we replace our f with its Stein
factorization then we get a finite and unramified map and (ii) and (iv)
imply that the fibres of prl : f(R) - H are smooth. D

DEFINITION 4.1.2: Two polarized varieties (V1, Xl ) and (V2, X2 ) are
called (numerically) isomorphic if there exists an isomorphism g: VI - V2
such that XI and g*( X2 ) are numerically equivalent, i.e. O(X1 - g*( X2 ))
E Pic(V1). This is clearly an equivalence relation.

BASIC SETUP 4.1.3.: Let «Vx, XÀ): À E 039B} be a family of polarized
varieties with fixed Hilbert polynomial x. Assume that A is a bounded
family. Pick a large number s, such that (9(sXx) is very ample and
Hi(V03BB, O(sX03BB)) = 0 for i &#x3E; 0. Then the linear system 1 sXx maps Vx into
a given projective space P7, and they form a subset H of the Hilbert
scheme. Assume that H is open, so it determines a subscheme, denoted
by H as well. Let R be the scheme representing the equivalence relation
"numerical isomorphism", and f : R - H X H the natural map. The
moduli space we want is just the quotient H/R if it exists. We have to
check conditions of Theorem 4.1.1.

LEMMA 4.1.4: Condition ( i ) is satisfied by definition. Condition (ii) is

satisfied in char. 0 if dim Pic V is locally constant. Condition (iv) is

satisfied in char. 0 if conditions (ii) and (iii) are satisfied.
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PROOF: The first statement is clear. The second is the same as [M-F] p.
172 (i). The last statement is due to Matsusaka [M2] p. 217 if the VÀ are
smooth. We sketch the proof in general.

The fibres of f : R ~ H X H are just the automorphism groups of the
varieties corresponding to the image point. In characteristic zero these
are smooth, so all we have to check is that they have locally constant
dimension. Since (iii) is satisfied this dimension is upper semicontinuous.
On the other hand the fibres of prl : I(R) -+ H have dimension h0(V03BB,
O(sX03BB))+h1(V03BB, O03BB)-dim Aut (Vx). By properness of f, f(R) is a

variety, so the semicontinuity of fibre dimensions applies and we get that
dim Aut(V ) is lower semicontinuous as well, hence locally constant. This
proves the lemma. D

LEMMA 4.1.5: If the family of polarized varieties of 5.1.3 has the property
that specializations are unique ( i. e. if g* : Y* - T* is a family over the
punctured spectrum of a DVR, then it has at most one extension to g:
Y T where the central fibre is in our family), then condition (iii) of
Theorem 4.1.1 is satisfied.

PROOF: This is just the concrete form of the valuative criterion of

properness. Q

In all our theorems in chapter three we had to assume that the
varieties we consider are nonruled. Unfortunately, as shown by examples
of M. Levine [L2] being ruled is not a closed condition. So if we just
throw away the ruled varieties we might end up with something strange.
But at least in char. 0 there is a satisfactory remedy, as in [F.A], [Ll]:

LEMMA 4.1.6: (char 0.) Let f : X - Y be a flat family of irreducible
varieties. Then those y e Y such that f-1(y) is uniruled, form a closed
subset of Y.

PROOF: Recall that a variety is uniruled if it is covered by rational curves.
So the specialization of a uniruled variety is uniruled again.

By results of [Ll], [F.A] uniruledness generalizes for smooth mor-

phisms in char. 0. So using simultaneous resolution over a stratification
of Y we get that uniruledness is a constructible condition. But it

specializes, so it is closed. D

REMARK 4.1.7: Another approach to this problem is the one chosen by
Matsusaka [M2]. He shows that it is sufficient to throw away some ruled
varieties. So we are left with all nonruled varieties and some ruled ones.

Unfortunately it is not clear which ruled varieties should be thrown

away. This question should be investigated.
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§4.2 Main Theorem

The following theorem is the culmination point of chapters 2 and 3.

THEOREM 4.2.1: Let us consider the family of polarized varieties (V, X)
with a fixed Hilbert polynomial. The moduli functor is coarsely represented
by a separated algebraic space of finite type if we restrict V to any of the
following classes (Char. 0 always assumed):

( i ) irregular, normal nonruled surfaces,
(ii) nonruled surfaces for which q &#x3E; 0 or pg &#x3E; 0, and only rational

singularities,
( iii ) nonruled surfaces with minimal singularities only,
(iv) irregular, normal, nonuniruled 3 folds with isolated singularities

only,
( v ) nonuniruled 3-folds with minimal singularities only,

( vi ) 3-folds with pg &#x3E; 0 having rational singularities only; or
(vii) nonuniruled smooth varieties.

REMARKS 5.2.2:

Concerning (i) Among normal surfaces being irregular and nonruled is
deformation invariant.

Concerning (ii) There are very few surfaces for which q = pg = 0.
Namely: Enriques surfaces, certain elliptic surfaces over
P1, and finitely many families of general type. Further-
more, being non-ruled is deformation invariant.

Concerning (iv) For irregular, normal 3-folds with isolated singularities
nonuniruledness is deformation invariant.

Concerning (vi) If pg &#x3E; 0 then the varieties are automatically nonunir -
uled. Furthermore, the condition pg &#x3E; 0 is deformation
invariant (assuming rational singularities).

Concerning (vii) This result was proved by Matsuska [M2]. We quote it
here for two reasons.

First, in [M-F] p. 171 a superfluous condition is added to the formulation
of the theorem (namely that H0(TV) = 0). Secondly, in [P] p. 13 a

counterexample is claimed. The problem with it is as follows (we use the
notation there). (1, 1) ~ Y(n, P1) hence condition (iii) is violated. If we
compactify the family then as (P, Q) degenerates to (1, 1) the special
fibre will be the surface corresponding to (1, 1) plus a (6n-3)-fold
hyperplane at t = oo.

PROOF oF THEOREM 4.2.1 We have to check the conditions of Theorem
4.1.1: The families are all bounded by Theorem 2.1.2, Theorem 2.1.3,
Proposition 2.6.4 (using Lemma 3.4.3 (iii)) and [M5]. The families form
an open subvariety of the Hilbert scheme by Lemma 4.1.6. For condition
(iii) of Theorem 4.1.1 we use Lemma 4.1.5 and Theorem 3.2.1 in the cases
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(i) and (iv), Theorem 3.4.12 in the cases (iii) and (v), and Remark 3.1.5
for (vii). In case (ii) and (vi) one can use Theorem 3.2.1 if q &#x3E; 0 and

Proposition 3.3.1 if pg &#x3E; 0.

By [G2] for a family of irreducible and reduced varieties dim Pic V, is
locally constant if none of the Pic V, has an additive component. If the Vt
are normal then Pic V, is projective so we are done. If V, has minimal
singularities then it is S2, so if Ct is a sufficiently ample generic curve
section then PicVt injects into Pic°Ct. Now by Lemma 3.4.3 (i) C, has
only normal crossings with independent tangencies, so Pic’C, has no
additive components. (see e.g. [S] V. 14)

So the proof of Theorem 4.2.1 is finished. D

REMARK 4.2.3: Here we discuss the problems that arise in char. p. The
main theoretical problem is that Pic°(V) and Aut(V) can be nonre-
duced, so conditions (ii) and (iv) will not be satisfied in general. 1 do not
know how to overcome this problem.

Another problem was pointed out before Lemma 4.1.6 about the
closedness of the ruled locus. For surfaces this is true even in char p. In

general, if a variety is ruled then any small deformation is separably
uniruled (see [Ll]), but 1 don’t know if this holds for the specializations.

§4.3 Remarks and further examples

There is one question concerning our results that naturally comes to
mind. Are these moduli spaces (quasi-projective) varieties or not? Here
we address this question. First we investigate the standard approach of
geometric invariant theory, say in the case of normal surfaces. This would
go as follows: we embed V with high muliples of X, and try to decide
whether the corresponding Chow or Hilbert points are (semi) stable or
not. A pair (V, X) is called asymptotically (semi-, un-) stable if for all
high enough embeddings we get a (semi-, un-) stable surface. (see [Mu]
and the references there).

Mumford proved ([Mu] 3.20) that if (V, X) is asymptotically semi-
stable, then the singularities of V are rational or elliptic at worst. So in
the majority of our cases the standard approach of geometric invariant
theory would not work.
A similar remark applies to the case of minimal singularities as well.

By (ibid. 3.19) they are asymptotically unstable if the multiplicity is at
least 7. Hence the connection between semistability and insignificance is
not as close as the hypersurface case suggested (ibid. Remark 2 on p. 81).
We could not decide in any of the cases in Theorem 4.2.1 whether the

resulting moduli space can be an honest algebraic space (i.e. not a

scheme). But here we present a similar example where we do get an
algebraic space which is not a scheme.
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THEOREM 4.3.1: Let S(n) be the family of normal surfaces X of degree n in
p3 for which 03A3x~Xpa(x, X)  1 2 (n-1 3). Then the quotient S(n)/SL(4) is
a separated algebraic space which is not a scheme for large n.

PROOF: (n-1 3) = h0(X, 03C9X), so the condition says that if f : X’ ~ X is a
desingularization then h0(X’, 03C9X’) &#x3E; 1 2h0(X, wx). To prove separated-
ness we must show that specializations are unique. If X X is a

1-parameter deformation of a surface in S(n) and f : X’ ~ X is a

resolution, then by Theorem 4.3.4 all exceptional divisors E of f have
h0(E, 03C9E)  pa(f(E), X)  1 2h0(X, wx), so it cannot be birational to a
surface in S( n ). Hence Proposition 3.1.3 implies that the action of SL (4)
on S(n) is proper. Hence the quotient S(n)/SL(4) is a separated
algebraic space.

What remains to prove is that it is not a scheme. By [M-F] Converse
1.13, if U is an open family of degree n surfaces, such that the operation
of SL(4) on U is proper and U/SL(4) is a scheme, then all surfaces in U
are stable. So to prove our last statement we have to show the existence
of an unstable surface in S( n ).

Let us look at surfaces of the form 03A3kIa1xI where I = (io, i1, i2, i3),
and the summation is over those l’s satisfying 03A3ij = n, i0  k. We choose
the coefficients al to be general. The resulting surface F will have only
one singular point at (1 : 0 : 0 : 0), which is an ( n-k )-fold point. It is easy
to compute that its pa is (n-k 3). h0(F, 03C9F) = (n-1 3), so direct computation
gives that if k &#x3E; 0.21n and n is large enough then F is in S(n). On the
other hand if k  0.25n then the one parameter subgroup given by
À(t)xo = t-3x0, X(t)x, = txi (i = 1, 2, 3) shows that F is unstable. This
proves our theorem. D

Another natural question is: what is the situation with regular surfaces?
The preceding theorem provides a partial answer. But in general the
specializations are not unique, as shown by the following examples.

EXAMPLE 4.3.2: Let F = ( f = 0), G = (g = 0), H = (h = 0) be smooth
surfaces in p3 intersecting transversally, and assume that deg h = deg
f + deg g. Consider the family of surfaces in p3 X A’ given by ( fg + th =

0). Along the special fibre the total space has some ordinary double
points where f = g = h = 0. To resolve these singularities we can blow-up
the ideal sheaf of G.

Outside the special fibre the new family is unchanged and the new
special fibre is F U G where F = ( F blown-up at the points f = g = h = 0)
and G = G, F r1 G is the proper transform of F n G. Now clearly the
normal bundle of G is O(- F n ) ~ (9G ( - deg f ). This is negative, so Û
is contractible to a point qr: X’ - X. It is easy to see that X is in fact

quasi-projective. 1 claim that X is Cohen-Macaulay. To prove this let
x = 7r(Û) be the only nonsmooth point of X. G is the exceptional divisor
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of 03C0, its ideal sheaf is 1, I/I2 ~ (NG)* = OG(deg f ). Now (x, X) is

Cohen-Macaulay iff Hlx(O)=0 for i  3 ([SGAII] 111.4.3). Since X is

normal the only interesting case is i = 2. Now Hix(O) ~ Ri-l iT*«9x,), so
all 1 need is R103C0*(OX’) = 0. By the Formal Function Theorem this is just
lim _ H1(O/In). From 0 - In/*In+1 ~ O/In+1 ~ O/In ~ 0 we get

But H1(O/I)~H1(G, O)=0 and H1(G, (9(n deg f)) = 0 for n  1 so
H1(O/In+1)=0 for all n. Thus H2x(OX)=0 and X is Cohen-Macaulay,
hence after contracting G we get a family of normal surfaces, where the
special fibre is birational to F.

Of course the role of F and G can be interchanged, and then we get a
family where the special fibre is birational to G. Outside the special fibres
they are isomorphic to the original family. D

A similar example with actual equations is the following:

EXAMPLE 4.3.3: Let P4 have coordinates ( x : y : z : u : v ) and Al the
coordinate t. Let ~(x, y, z, u, v ) be a general homogeneous polynomial
of degree  4, Q(x, y, z) a general quadratic form. We consider two
families of complete intersections in P4, parametrized by t:

The map a(x, y, z, u, v, t) = (x, y, z, t-1u, tv, t ) gives an
isomorphism outside the special fibres. The special fibres are birational
to the u = 0 (resp. v = 0) hyperplane section of ~ = 0, so they are not
isomorphic. D

It is interesting to compute the basic numerical invariants. The general
surface has pa(Ft)=2(n-13)+(n-12), and the contribution of the singular-
ity is Pa(O, Fo) = (n-13)+)n-12) so Pa(O, F0) &#x3E; 1 2pa(Ft) as it should be by
Theorem 4.3.1.
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