The Plancherel theorem for general semisimple groups
Compositio Mathematica, Tome 57 (1986) no. 3, p. 271-355
@article{CM_1986__57_3_271_0,
     author = {Herb, Rebecca and Wolf, Joseph A.},
     title = {The Plancherel theorem for general semisimple groups},
     journal = {Compositio Mathematica},
     publisher = {Martinus Nijhoff Publishers},
     volume = {57},
     number = {3},
     year = {1986},
     pages = {271-355},
     zbl = {0587.22005},
     mrnumber = {829325},
     language = {en},
     url = {http://www.numdam.org/item/CM_1986__57_3_271_0}
}
Herb, Rebecca A.; Wolf, Joseph A. The Plancherel theorem for general semisimple groups. Compositio Mathematica, Tome 57 (1986) no. 3, pp. 271-355. http://www.numdam.org/item/CM_1986__57_3_271_0/

1 P. Dourmashkin: Ph.D. Thesis, MIT (1984).

2 M. Duflo: On the Plancherel formula of almost-algebraic real Lie groups, Lie Group Representations III, Proceedings, Univ. of Maryland 1982-1983, Lecture Notes in Math., Vol. 1077, Springer-Verlag, Berlin and New York, 101-165. | MR 765553 | Zbl 0546.22014

3 T.J. Enright, R. Howe and N.R. Wallach: A classification of unitary highest weight modules, Representation Theory of Reductive Groups (Proceedings, Utah, 1982), Birkhäuser (1983) 97-143. | MR 733809 | Zbl 0535.22012

4 T.J. Enright, R. Parthasarathy, N.R. Wallach, and J.A. Wolf:

(a) Classes of unitarizable derived functor modules, Proc. Nat. Acad. Sci., U.S.A. 80 (1983) 7047-7050. | Zbl 0527.22007

(b) Unitary derived functor modules with small spectrum, Acta Math. 154 (1985) 105-136. | MR 772433 | Zbl 0568.22007

5 T.J. Enright and J.A. Wolf: Continuation of unitary derived functor modules out of the canonical chamber Analyse Harmonique sur les Groupes de Lie et les èspaces symétriques, Actes du colloque du Kleebach, 1983, Mémoire de la Societé Math. de France, 112 (1984) 139-156. | Numdam | MR 789083 | Zbl 0582.22013

6 Harish-Chandra: (a) Discrete series for semisimple Lie groups I, Acta Math. 113 (1965) 241-318. | MR 219665 | Zbl 0152.13402

(b) Harmonic analysis on real reductive groups I, J. Funct. Anal. 19 (1975) 104-204. | MR 399356 | Zbl 0315.43002

(c) Harmonic analysis on real reductive groups, II. Inv. Math., 36 (1976) 1-55. | MR 439993 | Zbl 0341.43010

(d) Harmonic analysis on real reductive groups, III, Ann. of Math., 104 (1976) 117-201. | MR 439994 | Zbl 0331.22007

7 R. Herb:(a) Fourier inversion of invariant integrals on semisimple real Lie groups, TAMS 249 (1979) 281-302. | MR 525674 | Zbl 0419.22015

(b) Fourier inversion and the Plancherel theorem for semisimple real Lie gioups, Amer. J. Math. 104 (1982) 9-58. | MR 648480 | Zbl 0499.43007

(c) Fourier inversion and the Plancherel theorem (Proc. Marseille Conf., 1980), Lecture Notes in Math., Vol. 880, Springer-Verlag, Berlin and New York, 197-210. | MR 644834 | Zbl 0467.43005

(d) Discrete series characters and Fourier inversion on semisimple real Lie groups, TAMS, 277 (1983) 241-261. | MR 690050 | Zbl 0516.22007

(e) The Plancherel theorem for semisimple groups without compact Cartan subgroups (Proc. Marseille Conf. 1982), Lecture Notes in Math. Vol. 1020, Springer-Verlag, Berlin and New York, 73-79. | Zbl 0523.43006

8 R. Herb and P. Sally: Singular invariant eigendistributions as characters in the Fourier transform of invariant distributions, J. Funct. Anal. 33 (1979) 195-210. | MR 546506 | Zbl 0417.22011

9 L. Punkánszky: The Plancherel formula for the universal covering group of SL(2, R), Math. Ann. 156 (1964) 96-143. | MR 170981 | Zbl 0171.33903

10 P.J. Sally, Jr.: Analytic continuation of the irreducible unitary representations of the universal covering group of SL(2, R), Mem. AMS 69 (1967). | MR 235068 | Zbl 0157.20702

11 P. Sally and G. Warner: The Fourier transform on semisimple Lie groups of real rank one, Acta Math. 131 (1973) 1-26. | MR 450461 | Zbl 0305.43007

12 D. Shelstad: Orbital integrals and a family of groups attached to a real reductive group, Ann. Sci. Ecole Norm. Sup. 12 (1979) 1-31. | Numdam | MR 532374 | Zbl 0433.22006

13 M. Vergne: A Poisson-Plancherel formula for semisimple Lie groups, Ann. of Math., 115 (1982) 639-666. | MR 657242 | Zbl 0501.43006

14 D. Vogan, Jr.: Unitarizability of certain series of representations, Ann. of Math., 120 (1984) 141-187. | MR 750719 | Zbl 0561.22010

15 N. Wallach: The analytic continuation of the discrete series I, II, T.A.M.S., 251 (1979) 1-17, 19-37. | MR 531967 | Zbl 0419.22018

16 G. Warner: Harmonic Analysis on Semisimple Lie groups, Vol. I, II, Springer-Verlag, Berlin and New York, 1972. | MR 498999 | Zbl 0265.22021

17 J.A. Wolf: (a) Spectrum of a reductive Lie group, AMS PSPM, Vol. 25, (1974) 305-312. | MR 369620 | Zbl 0298.43015

(b) Geometric realizations of representations of reductive Lie groups, AMS PSPM, Vol. 25 (1974) 313-316. | MR 369621 | Zbl 0282.43010

(c) Unitary representations on partially holomorphic cohomology spaces, Mem. AMS. 138 (1974). | Zbl 0288.22022