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THE CHARACTERIZATION OF DIFFERENTIAL OPERATORS BY
LOCALITY: CLASSICAL FLOWS

Ola Bratteli, George A. Elliott and Derek W. Robinson

Abstract

Let Co ( X ) denote the continuous functions over the locally compact Hausdorff space X
vanishing at infinity and T an action of R03BD as *-automorphisms of Co ( X ) and let T denote
the associated group of homeomorphisms of X. Further let ( 81, &#x26;2, .... c5p) denote the
infinitesimal generators of T and C1°( X) the continuous functions which vanish at infinity
and which are in the common domain of all monomials in the 8, .

We prove that a linear operator H from C1°( X) into the bounded continuous functions
Cb ( X ) satisfies the locality condition

supp(Hf) ~ supp(f), 1 E Cû( X),

if, and only if, it is a polynomial in the 8, . Moreover we characterize the boundedness and
continuity properties of the coefficients of the polynomials which arise in this manner. For
example if T acts freely then the coefficients are in Cb(X). If the action of T is not free the
coefficients can be unbounded. If v = 1 we prove that the coefficients are polynomially
bounded in the frequencies of the orbits of T.

We also establish that H is local and satisfies

H(f)f+fH(f)-H(ff)0, f~C~0(X),

if, and only if, it is quadratic in the 8, and the coefficients satisfy certain positivity
requirements.

[1] Compositio Mathematica 58 (1986) 279-319
û Martinus Nijhoff Publishers, Dordrecht - Printed in the Netherlands

1. Introduction

In 1960 Peetre [13] established that partial differential operators can be
characterized by locality. Our version of Peetre’s theorem states that if H
is a linear operator from C~0(R03BD), the infinitely often differentiable
functions over R" which vanish at infinity, into Cb(R03BD), the bounded
continuous functions over R03BD, satisfying the locality conditions
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then there exist a positive integer n and bounded continuous functions l a
over R " such that

where consists of non-

negative integers,

Peetre’s original theorem draws the same conclusion on bounded open
subsets of R’.

The primary purpose of this paper is to derive a similar description of
a local operator defined on a domain associated with a flow on a

topological space. (Other forms of locality have been considered in [2],
[5], [6], [7].) We also characterize certain second-order elliptic operators
in terms of locality and a dissipation property. In the above setting we
establish that a linear operator H : C~0(R03BD) ~ Cb(R03BD) satisfies the condi-
tions

for all f~C~0 (R03BD) if, and only if, there exist bounded continuous

functions lo, li, 1,, over R03BD such that

where l00, and (-lij(x)) is a positive-definite real matrix for each
x~R03BD.

Related results on second-order elliptic operators have been given by
Nelson [12], Theorem 5.3, Forst [4], [9], and Pulè and Verbeure [14].
Nelson considers positive contraction semigroups S on C0(R03BD) with the
property

for all t &#x3E; 0, x E R ". By the Riesz representation theorem these are given
by probability measures 03BCt(x, ·) as
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Nelson assumes that the generator H of S contains C20(R03BD) in its

domain, and then proves that S has the property

for all E &#x3E; 0, if, and only if, H is an operator of the above kind with

10 = 0 and the li real. Forst establishes the same result for translation
invariant semigroups, i.e. semigroups with 03BCt(x, ·) = 03BDt(· - x) for some
convolution semigroup i,’ of measures over R03BD, and proves that then the
conditions are equivalent to the locality properties supp( Hf ) ç supp( f ).
Pulè and Verbeure also derive an analogous result for dissipative oper-
ators in classical statistical mechanics [14]. (Lumer [10] considers local
operators which generate diffusion semigroups more abstractly but the
setting is too general to classify these generators.)

As a corollary of our characterization of second-order differential
operators one can deduce that H : C~0(R03BD) ~ C0(R03BD) is a derivation, i.e.

if, and only if,

where the functions ll are bounded and continuous.
Our aim is to derive similar results for local operators associated with

a general dynamical system.
Throughout the sequel (X, R03BD, T) denotes a dynamical system con-

sisting of a continuous action T of the group R03BD as homeomorphisms of
the locally compact Hausdorff space X. Moreover (U, R03BD, T ) denotes
the associated C*-dynamical system formed by the abelian C*-algebra
U = C0(X) and the strongly continuous action T of R" as *-automor-
phisms of 2[ defined by

where f ~ U, t = (t1, t2l ...1 1p) E R03BD, and w E X. The generators 81,
82, ... , 8p of T now play the role of the partial differential operators, and
the common domain

of all monomials in the 03B4i replaces the C’-functions. Here we have again
used the notation
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THEOREM 1.1: Assume T is free, i. e. the stabilizer subgroups

are zero for all w E X.
Let H be a linear operator from 9f ,,, in to 91.

A. The following four conditions are equivalent:

for all t in a neighbourhood of

4. There exist a positive integer n and a (unique) family of bounded
continuous functions la over X such that

Moreover each finite family of bounded continuous functions la over X

determines a linear operator from U~ into 9f which satisfies these condi-
tions.

B. The following two conditions are equivalent:
1. a. supp(Hf ) 9 supp(f), f~U~,

b. H(ff)-f(Hf)-(Hf)f0, f~U~.

2. There exist bounded continuous functions 10, Il, lij over X such that

for all f~U~, where l0 0, and ( - lij(03C9)) is a positive-definite real
matrix for each w E X.
C. The following two conditions are equivalent:

1. H(fg) = (Hf)g + f(Hg), f, g ~ U~.
2. There exist bounded continuous functions 1, over X such that

If T is not free then similar statements hold but three complications
occur.

First, if the stabilizer subgroup S(03C9) is not zero then some linear
combinations of the (03B403B1f)(03C9) vanish for all f ~ U~. Therefore the local
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operator H cannot have a unique representation as a polynomial in the
8 a. But this difficulty is principally one of formulation and is easily
overcome. One establishes that there exists a unique element 1( a ) of the
universal enveloping algebra of the quotient Lie algebra R03BD/s(03C9), where
s(03C9) denotes the Lie algebra of the stabilizer subgroup S(03C9), such that

Here 03C4f(03C9) denotes the function t ~ (03C4tf)(03C9) interpreted as a function
on the quotient group R03BD/S(03C9).

Second, since the stabilizer subgroups S(03C9) can vary with w the

continuity properties of the map 1 : w E X ~ 1(,w) are more complex. One
can identify the enveloping algebra of R03BD/s(03C9) as the subalgebra of the
enveloping algebra of R" generated by the orthogonal complement
s(03C9)~ of s(03C9) in R03BD. Then there is a unique homomorphism of the
enveloping algebra of R P onto this subalgebra which is the identity on
this subalgebra and zero on s(03C9)~ which we call the canonical proj ec-
tion. If w converges to wo in X then the canonical projection of l(03C9)
onto the subalgebra generated by s(03C90)~ c R converges to l( wo ). If the
dimension of s(03C9)~ is ultimately equal to the dimension of s(03C90)~ (it
cannot be strictly less), then l(03C9) itself converges to l(03C90). (By conver-
gence in the enveloping algebra of R03BD we mean convergence of the
coefficients with respect to the canonical basis.)

The third, and essential, complication is that 1 is no longer necessarily
bounded. Unboundedness of the coefficients of 1 can occur at certain

fixed points of the flow T, points which are enclosed by a local periodic
flow of increasing frequency. Since this difficulty already occurs for
v = 1 we will, for simplicity, restrict further discussion to this case, and
set sl = 8.

First note that if v = 1 there are three types of behaviour of a point
,w e X under the action T. The point w can be fixed, i.e. Tt03C9 = w for all
t~R, and we denote the set of fixed points by Xo. The orbit t~ R - Tt03C9
can be periodic, i.e., the set of p &#x3E; 0 for which Tlw = w has a strictly
positive greatest lower bound p(03C9). The value p(03C9) is called the period
of w and the frequency of w is defined by 03BD(03C9) = 1/p(03C9). Finally the
orbit of w can be open, i.e., Tt03C9 = w if and only if t = 0, and we then
define the frequency of w to be zero. Thus we have associated a

frequency 03BD(03C9) to each w E XBX0.
Next consider a function g over XBXo. Then g is defined to be

polynomially bounded if there exists a polynomial P, which we may take
to be of the form c(1 + xk) with c &#x3E; 0, such that

for
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THEOREM 1.2: Assume P = 1 and let H be a linear operator from U~ into
U.
A. The following four conditions are equivalent:

1. supp(Hf) ç supp( f ), f~U~.
2. If f ~ U~, lJJ E X, and (03C4tf)(03C9) = 0 for all t in a neighbourhood of

the origin in R then (Hf)(03C9) = 0.
3. If f ~ U~ and (8mf)(lJJ)=0 for m = 0, 1, 2,... then (Hf)(03C9) = 0.
4. There exist an n  0 and a (unique) family of functions 10, Il’... , ln

on X with l0 bounded and continuous and Il’...’ l n equal to zero on
the fixed points Xo of T and polynomially bounded and continuous on
XBX0 such that

Moreover each finite family of functions 10, Il’...’ ln with the boundedness
and continuity properties specified in Condition 4 determines a linear

operator from into X which satisfies these conditions.
B. The following two conditions are equivalent:

1. a. supp(Hf) ~ supp(f),_fEAoo,
b. H(ff)-f(Hf)-(Hf)f0, f e 9t.-

2. H=(l0+l103B4+l203B42)|U~.
where the 1, have the properties of Condition 4 above but l0  0 and l2  0.
C. The following two conditions are equivalent:

1. H(fg) = (Hf)g + f (Hg), f, g E U~.
2. There exists a (unique) function Il which vanishes on Xo and is

polynomially bounded and continuous on XB Xo such that

The existence of the continuous function li on XBX0 in part C was
proved by Batty in [1]. Batty did not determine which functions arise in
this way.

The simplest explicit example of a local operator with an unbounded
coefficient is given by setting X = R2, choosing radial co-ordinates

( r, 0), and defining

Thus the orbits of the flow are concentric circles centred at the origin
and the orbit of radius r has frequency 1 /r. The origin is a fixed point
and the flow is an idealized whirlpool. The generator 8 associated with
the flow has the form (1/r)~/~03B8 and the operators (1/rn)03B4 are local
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operators from 9f ,, into U. Locality is easily checked and the fact that
the operators are defined on and map it into 9f follows from the last
statement of part A of Theorem 1.2.

The foregoing statements will be proved in Section 3 with the aid of
various results on orbits which are derived in Section 2. Generalizations
are discussed in Sections 4 and 5. In Section 4 we characterize local

operators from Un into Um, where

as polynomials in the 8, of order n - m, whose coefficients satisfy
certain regularity properties. In Section 5 we establish Theorem 1.2 for a
one-dimensional local flow.

2. Extensions f rom orbits

One natural method of analyzing properties of flows is by restricting to
orbits. If one wishes to use this method to analyze operators associated
with the flow there are two types of problem. First it is not clear whether
the operator has a well defined restriction to each orbit. Second it is

difficult to decide whether a given function over the orbit is in the

domain of the restriction. To handle this second problem one must be
able to show that the function on the orbit has an extension which lies in

the domain of the unrestricted operator, and it is useful to be able to

construct extensions with good boundedness and support properties etc.
The aim of this section is to resolve such problems. The results will then
be used in Section 3 to prove Theorems 1.1 and 1.2.

It is necessary to consider the restriction of elements of U~ to open
subsets of the orbits 03A903C9 of points w under T. It suffices for most

purposes to consider neighbourhoods in 03A903C9 of w of the form

where 1. 1 is the 1°° norm on R P, and, by rescaling, one can restrict
attention to I = I1.

Let Cb(I) denote the Banach space of bounded continuous functions
on I and define U~(I) as the subspace of Cb(I) formed by the
restrictions f=F|I to I of those F~U~ for which supp( f ) is a

compact subset of I. One can introduce analogues of U~(I) for more
general subsets of the orbits in an obvious way. If (9 ç S2w is an open
subset of Q(A) then U~(O) is the subspace of Cb(O) formed by the
restrictions to 1P of elements of U~ whose support is compact in (9. But

we will only need to consider the U~(I). In the case v = 1, there are
three possibilities: (1) w is periodic with period  2 or w is aperiodic.
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Then I is homeomorphic to ( -1, 1). (2) w is periodic with period  2.

Then I is homeomorphic to a circle. (3) w is a fixed point. Then
I = {03C9}.
Now if F ~ U~ and F(Tt03C9’) = 0 for some w’ E I and all small t then

(03B4iF)(03C9’) = 0 for i = 1,..., v by definition. Therefore the restrictions of
the 03B4i to U~(I) are well defined operators from U~(I) into
which can be identified with the partial differential operators Dl = alati.
Similarly the monomials 8« are well defined in restriction to U~(I), and
coincide with D". Therefore U~(I) can be identified with a subspace of
the infinitely often differentiable functions with compact support on the
manifold I, which is a quotient of the open unit cube in R’ (in the case
03BD = 1 we have the three possibilities I(-1,1), IT or I={03C9}
mentioned above; if 03BD  2 there are many possibilities. In the special
case that w is fixed by T then U~(I) is isomorphic to C).

Finally for F~U~ and m  0 we introduce the Cm-seminorms

Note that the latter norms ~ · ~ I I, m are also defined for f ~ U~(I).

THEOREM 2.1 : Let n E N and E &#x3E; 0, let f ~ U~ ( I ) and let O be an open
subset of X containing supp(f) ç I.

It follows that there exists an F ~ U~ such that
1. ~F~m(1+~)~f~I,m, m = 0, ... , n ,
2. F = f on I,
3. supp(F) ç O.

The proof of Theorem 2.1 relies on two lemmas. The first is a general
regularization result, which we formulate only for v = 1. The extension
to general v is straightforward.

LEMMA 2.2: Let (U, R, T) be a C*-dynamical system and denote the
infinitesimal generator of T by 8. If x e 91 and S &#x3E; 0 define xs by

and write x = xs,o and xS,m 
= (xs,m-1)s for m = 1, 2,....

It follows that xS,n E D(03B4n) and
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PROOF: We have that

Hence by strong continuity of
- Ir-s(x».
Thus

If y E D(03B4) then 03B4(yS) = 03B4(y)S because 8 is closed. Thus, by induction
xS,nED(8m) for 0  m  n and

Since ~ yS~  ~y~ for all y ~ U, it follows by iteration first that

and next that

for 0  m  n.
The next lemma is an existence result for abelian systems.

LEMMA 2.3: Let (U, RP, T) be an abelian C*-dynamical system, w a point
in the spectrum X of U, n a positive integer, and O an open neighbourhood
of the compact set

where
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It follows that there exists a g ~ U~ such that

PROOF: We give the proof for v = 1. The general case is established in a
similar manner, but then it is important that |t| is the loo-norm of t
rather than the Euclidean norm.

Choose an open neighbourhood Wo of the compact set C = {Tt03C9; |t|
 nS + 1} with the property that

for |t|  nS. Next choose a continuous function go on X with compact
support in (!Jo, with go Il = 1, and such that go = 1 in a neighbourhood
of C. Finally choose a positive h E Cf(R) with supp( h ) ç (-~, e) where
E is sufficiently small that Tt(supp(g0)) ~ O0 for |t| 1  E, and Tr go = 1 on
C for |t|  ~. Normalize h so that

and then define

It follows that g, has compact support in O0, ~ g1~  1, (03C4tg1)(03C9) = 1
for |t|  nS + 1, and g1 ~ U~. Note that this last property is a conse-
quence of the regularization with h. Next we regularize gl in the manner
of Lemma 2.2 and set g = (g1)S,n.

Since TtO0 ç a for 1 t |  nS and supp( gl ) (90 one has supp(g) 9 0.
Moreover 11 g 11  1 and (03C4tg)(03C9) = 1 for 1 t 1. Finally ~03B4mg~  S - m
for m  n by Lemma 2.2.
Now we return to the proof of Theorem 2.1. Again we consider the

case v = 1. The proof of the general case is very similar.

PROOF of THEOREM 2.1: First choose K &#x3E; 0 and S  1 such that

Second choose an open set (9’ c (9 such that supp( f ) c CO’ and (91 ~

{Tt03C9; |t|  2nS + 1} ç I. Third choose g ~ U~ with supp(g) 9 m’and
g = 1 on supp( f ). This can be arranged by first choosing a continuous g
with the last two properties, such that supp(g) is compact and g = 1 in a
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neighbourhood of supp( f ) in X, and then regularizing with a suitably
chosen function h as in the proof of Lemma 2.3.

Next let fo ~ U~ denote an extension of f. Such an extension exists
by the definition of U~(I). Define f, = f0g. One then has f1 = f on I
and in particular f1 ~ I,m = ~ f ~ I,m for m = 0,..., n. Moreover f1 ~ U
has the property that (supp(f1)) n {Tt03C9; |t|  2nS + 1} ~ I, so fl = 0 on
( T, w; |t|  2 nS + 1}BI. Therefore one may choose an open neighbour-
hood (91 of {Tt03C9; |t|  2 nS + 1} such that

Finally by Lemma 2.3 one can choose an h ~ U~ such that supp( h ) ç
O1, ~03B4mh ~  S-’ for 0  m  n, and h = 1 on I. Define F= f1h =fogh.
It then follows that F = f, = f on I. But by Leibniz’s rule

Moreover supp(F) ç supp(g) ç (9’c m.
Finally we prove the existence of functions f ~ U~(I) with specified

behaviour at w.

THEoREM 2.4: Let (U, R03BD, T ) be an abelian C*-dynamical system and w a
point in the spectrum X of U. Let O be an open neighbourhood of w, M
and N positive integers and 03B3 ~ C. Further assume there exists an E &#x3E; 0

such that T[-~,~]03BD03C9 is an injective image of [-~, E ]’, and choose E

sufficiently small that T[-~,~]03BD03C9 is contained in m. Finally let n be a v-tuple
of non-negative integers with |n|  N.

It follows that there exists a = a( M, N, ~) &#x3E; 0 only depending on M, N
and E and an F e 91,,. such that
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and

In fact this result is stronger than necessary for the subsequent
discussion. It would suffice to consider the case |n|  M and omit
reference to the statement involving y. Nevertheless the more general
statement could be of use in similar contexts.

Again we will only give the details in the case v = 1. An essential
ingredient is the following result for C~00(-~, ~), the infinitely often
differentiable functions with compact support in the interval (-~, E).

LEMMA 2.5: Let n, M, N be positive integers with n  N and let E &#x3E; 0 and

y EE C. There exists an f E C~00( -~, ~) of the form g * h with g, h E

C~00(-~/2, E/2) such that

PROOF: Fix a &#x3E; 0, to be specified later, and denote by go the polynomial
of Nth degree, or less, such that

(More precisely, go has degree n.) In particular,

Consider the (M + l)-dimensional linear space of polynomials p of
degree 2M + 1, or less, such that

Any polynomial p ~ V is determined by the M + 1 numbers

Hence since V is finite-dimensional there exists a smallest number C &#x3E; 0
such that
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for all p ~ V, where we have used the notation

for F ~ R.
Next choose an interval J=[-03B2, 03B2] with 0  03B2  E/4 such that

In particular,

and it follows that the unique polynomials p ± of degree 2 M + 1, or less,
such that

satisfy

Now define a function g, on R by

Then gl E CM(R), and

Next note that there exists an h1 ~ C~00(-1, 1) such that
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This follows because if the latter conditions always implied

then by linear algebra there would exist 03BB1, 03BB2, ..., 03BBN ~ C such that

and this would lead to the contradiction

Now for p &#x3E; 0 we define hILE C~00(-03BC, IL) by

and observe that

Moreover

The functions ha also have the property that if p is a polynomial of
degree at most N then

i.e., for any polynomial p of degree at most N

Next fix jn=min (03B2/4, ~/4-03B2). Set g = g1 * h03BC; h = h03BC, and f =
g * h . Since supp(h03BC) ç (-03BC, 03BC) with 03BC  03B2/4, and gl = g in [-03B2, 03B2],
the function g agrees with the polynomial go in a neighbourhood of
[-03B2/2, 03B2/2], and hence f = g1 * hp. * hp. agrees with go in a neighbour-
hood of 0. But
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and IL  E/4 - 03B2. Therefore

Moreover,

Finally if a is specified by

then Il .Î Il M  ~. Note that a is a function of M, N and E.
Now we return to the proof of Theorem 2.4 for v = 1.

PROOF of THEOREM 2.4: First note that T[-~,~]03C9 is an injective image of
[ - E, E and is contained in 0, by assumption. Moreover there exist, by
Lemma 2.5, go, h0 ~ C~00(R) with support in (-~/2, E/2) such that
f0 = g0 * h0 satisfies

Since supp( fo ) and supp( h o ) are contained in ( - E, E ) we may transport
fo and ho to the orbit 0,.,, and consider them as continuous functions on
the closure I - of the interval I = T(-~,~)03C9. Moreover since h o is zero
outside [-~/2, E/2] we can extend it to a function hl E C0(X) with
compact support such that Tt (supp(h1» 9 O for t E [ - E/2, E/2]. Next
define f, 1 by

Since h1 ~ U and go E C~00(R) it follows that fi ~ U~, and since

Tt(supp(h1)) ç m for t E [ - E/2, E/2] and supp( go ) c ( - E/2, E/2) it also
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follows that supp(f1) c m. Moreover, since h1 = h o on I, fo = f1 on I
and hence

Therefore by Theorem 2.1, with f=~-1f1, O=O, and n = M, there exists
F e such that supp( F ) c m, F=f1 on I, and F m  E (Note that
supp(f1 1 1) = supp( fo) is a compact subset of I.)

This completes the proof of Theorem 2.4.

REMARK 2.6: If v = 1 and n = 0 then Theorem 2.4 is true even if T[-~,~]03C9
is not injective. In this case one can apply Theorem 2.1 as follows. Since
03BD = 1 the assumption that T[-~,~]03C9 is not injective means t ~ Tt03C9 is

periodic with period p(03C9)  ~. Now if f denotes the constant function
with value E/(l + E) on 03A903C9 then it follows from Theorem 2.1, with n
replaced by M, that there exists an F ~ U~ such that ~F~M  (1 +
,E) 11 f ~ l, M = E, F = f on 9,,, and supp( F ) ç (9. In particular (03B4MF)(03C9)
= 0 for m  1 and F(03C9) = f(03C9) = ~/(1 + ~). Thus the conclusion of
Theorem 2.4 is valid with a( M, N, E ) = ~/(1 + E ). If T[-~,~]03C9 is injective
a similar argument based on Theorem 2.1 shows that a(M, N, E) can be
arranged to have the form E/(l + E)aM where aM is an increasing
sequence with 03B1M  1.

3. Locality theorems

In this section we prove Theorems 1.1 and 1.2 with the aid of the results
of Section 2. We first prove Part A of Theorem 1.2 and hence deduce
Part A of Theorem 1.1 for v = 1. We then comment on the extension of
this last result to higher dimensions. Finally we prove Parts B and C of
both theorems.
We begin by proving 1 =&#x3E; 4 in Part A of Theorem 1.2. This is the most

difficult of the various implications and it depends upon a series of
observations.

OBSERVATION 1: There is an integer n and a C,,,, &#x3E; 0 such that

for ail where F is a finite set.
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PROOF. Assume this is false. Then there are distinct points wn E X such
that f ~ U~ ~ (Hf)(03C9n) is discontinuous with respect to ~·~n. Let w
be a limit point of w" in X ~ {~}. Choose wn ~ 03C9 and take disjoint
open neighbourhoods (9 and O(1)03C9 of wn and w. Next choose 03C9n2 ~ mu1)
such that lJJn2 =1= lJJ and take disjoint open neighbourhoods O03C9n2, O(2)03C9 c O(1)03C9.
Proceeding in this way one obtains an infinite sequence ot points 03C9nm
with disjoint open neighbourhoods (9,,,’ such that f ~ (Hf)(03C9nm) is

discontinuous with respect to ~·~m.
Next choose functions gm ~ U~ such that supp(gm) ~ m (A) and gm = 1

on an open neighbourhood U03C9 of wn This is possible by regulariza-
tion. [It is even possible by functional analysis of the domain of S
whenever 8 is a closed derivation and U~ is dense; see, for example, [1],
Lemma 2.3.] Then by assumption, there exist hm ~ U~ such that

and

Now set One has

for m à n, where the last estimate follows by Leibniz’s rule. Thus the
series

converges with respect to the C"-seminorms Il - Il,, for all n. It follows
that f ~ U~. But from the choice of the gm one has f = fm on (9." and

f = hm on U03C9nm. Therefore (H(f-hm))(03C9’)=0 for all 03C9’ ~ U03C9nm by
Condition 1. But this leads to the inequality 

which contravenes the hypothesis that Hf is bounded.

OBSERVATION 2: If lJJ E XBF, where F is the finite set of Observation 1,
there exist scalars l0(03C9), l1 ( 03C9 ),..., l n (W) E C such that


