@article{CM_1986__58_3_371_0, author = {Van Dijk, G. and Poel, M.}, title = {The {Plancherel} formula for the pseudo-riemannian space $\mathrm {SL}(n, \mathbb {R}) / \mathrm {GL}(n - 1, \mathbb {R})$}, journal = {Compositio Mathematica}, pages = {371--397}, publisher = {Martinus Nijhoff Publishers}, volume = {58}, number = {3}, year = {1986}, mrnumber = {846911}, zbl = {0593.43009}, language = {en}, url = {http://archive.numdam.org/item/CM_1986__58_3_371_0/} }
TY - JOUR AU - Van Dijk, G. AU - Poel, M. TI - The Plancherel formula for the pseudo-riemannian space $\mathrm {SL}(n, \mathbb {R}) / \mathrm {GL}(n - 1, \mathbb {R})$ JO - Compositio Mathematica PY - 1986 SP - 371 EP - 397 VL - 58 IS - 3 PB - Martinus Nijhoff Publishers UR - http://archive.numdam.org/item/CM_1986__58_3_371_0/ LA - en ID - CM_1986__58_3_371_0 ER -
%0 Journal Article %A Van Dijk, G. %A Poel, M. %T The Plancherel formula for the pseudo-riemannian space $\mathrm {SL}(n, \mathbb {R}) / \mathrm {GL}(n - 1, \mathbb {R})$ %J Compositio Mathematica %D 1986 %P 371-397 %V 58 %N 3 %I Martinus Nijhoff Publishers %U http://archive.numdam.org/item/CM_1986__58_3_371_0/ %G en %F CM_1986__58_3_371_0
Van Dijk, G.; Poel, M. The Plancherel formula for the pseudo-riemannian space $\mathrm {SL}(n, \mathbb {R}) / \mathrm {GL}(n - 1, \mathbb {R})$. Compositio Mathematica, Tome 58 (1986) no. 3, pp. 371-397. http://archive.numdam.org/item/CM_1986__58_3_371_0/
[1] Représentations de groupes localement compacts, Lecture Notes in Mathematics, Vol. 276. Springer, Berlin etc. (1972). | MR | Zbl
:[2] Vecteurs différentiables dans les représentations unitaires des groupes de Lie, Lecture Notes in Mathematics, Vol. 514, 20-33. Springer, Berlin etc. (1976). | Numdam | MR | Zbl
:[3] Higher Trancendental Functions, Vol. I. New York: McGraw-Hill (1953). | Zbl
et al.:[4] Higher Transcendental Functions, Vol. II. New York: McGraw-Hill (1953). | Zbl
et al.:[5] Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl. 58 (1979) 369-444. | MR | Zbl
:[6] Discrete series characters on non-Riemannian symmetric spaces, thesis, Harvard University, Cambridge (Mass.) (1984).
:[7] Spherical distributions on the pseudo-Riemannian space SL(n, R)/GL(n-1, R), Report no 23, University of Leiden, 1984 (to appear in J. Funct. Anal.). | MR
and[8] Universelle umhüllende Algebra einer Lokal kompakten Gruppe und ihre selbstadjungierte Darstellungen. Anwendungen. Studia Math., 24 (1964) 227-243. | MR | Zbl
and :[9] The Plancherel formula for the pseudo-Riemannian space SL(3, R)/GL(2, R). Sibirsk Math. J. 23 (1982) 142-151 (Russian). | Zbl
:[10] Analytic vectors. Ann. of Math. 70 (1959) 572-615. | MR | Zbl
:[11] Analysis on real hyperbolic spaces. J. Funct. Anal. 30 (1978) 448-477. | MR | Zbl
:[12] The theorem of Bochner-Schwartz-Godement for generalized Gelfand pairs. In: K.D. Bierstedt and B. Fuchsteiner (eds.), Functional Analysis: Surveys and recent results III, Elseviers Science Publishers B.V. (North Holland) (1984). | MR | Zbl
:[13] Invariant differential operators on a semisimple symmetric space and finite multiplicities in a Plancherel formula. Report PM-R 8409, Centre for Mathematics and Computer Science, Amsterdam (1984).
:[14] On generalized Gelfand pairs. Proc. Japan Acad. Sc. 60, Ser. A(1984) 30-34 | MR | Zbl
: