Conformal indices of riemannian manifolds
Compositio Mathematica, Tome 60 (1986) no. 3, pp. 261-293.
@article{CM_1986__60_3_261_0,
     author = {Branson, Thomas P. and {\O}rsted, Bent},
     title = {Conformal indices of riemannian manifolds},
     journal = {Compositio Mathematica},
     pages = {261--293},
     publisher = {Martinus Nijhoff Publishers},
     volume = {60},
     number = {3},
     year = {1986},
     mrnumber = {869104},
     zbl = {0608.58039},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1986__60_3_261_0/}
}
TY  - JOUR
AU  - Branson, Thomas P.
AU  - Ørsted, Bent
TI  - Conformal indices of riemannian manifolds
JO  - Compositio Mathematica
PY  - 1986
SP  - 261
EP  - 293
VL  - 60
IS  - 3
PB  - Martinus Nijhoff Publishers
UR  - http://archive.numdam.org/item/CM_1986__60_3_261_0/
LA  - en
ID  - CM_1986__60_3_261_0
ER  - 
%0 Journal Article
%A Branson, Thomas P.
%A Ørsted, Bent
%T Conformal indices of riemannian manifolds
%J Compositio Mathematica
%D 1986
%P 261-293
%V 60
%N 3
%I Martinus Nijhoff Publishers
%U http://archive.numdam.org/item/CM_1986__60_3_261_0/
%G en
%F CM_1986__60_3_261_0
Branson, Thomas P.; Ørsted, Bent. Conformal indices of riemannian manifolds. Compositio Mathematica, Tome 60 (1986) no. 3, pp. 261-293. http://archive.numdam.org/item/CM_1986__60_3_261_0/

[1] M. Berger, P. Gauduchon, and E. Mazet: Le Spectre d'une Variété Riemannienne. Springer-Verlag, Berlin (1971). | MR | Zbl

[2] D. Bleecker: Determination of a Riemannian metric from the first variation of its spectrum. Amer. J. Math. 107 (1985) 815-831. | MR | Zbl

[3] T. Branson: Conformally covariant equations on differential forms. Comm. in P.D.E. 7 (1982) 392-431. | MR | Zbl

[4] T. Branson: Differential operators canonically associated to a conformal structure. Math. Scand. 57 (1985) 293-345. | EuDML | MR | Zbl

[5] T. Branson and B. Ørsted: Conformal spectral geometry, preprint. Purdue University (1984).

[6] D. Burns, K. Diederich and S. Shnider: Distinguished curves in pseudoconvex boundaries. Duke Math. J. 44 (1977) 407-431. | MR | Zbl

[7] I. Chavel: Eigenvalues in Riemannian Geometry. Academic Press, New York (1984). | MR | Zbl

[8] Y. Choquet-Bruhat and D. Christodoulou: Existence of global solutions of the Yang-Mills, Higgs and spinor field equations in 3 + 1 dimensions. A nn. Sci. École Norm. Sup. (4) 14 (1981) 481-500. | EuDML | Numdam | MR | Zbl

[9] J. Dowker and G. Kennedy: Finite temperature and boundary effects in static space-times. J. Phys. A 11 (1978) 895-920. | MR

[10] C. Fefferman: Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains. Ann. of Math. 103 (1976) 395-416. | MR | Zbl

[11] C. Fefferman and C.R. Graham: Conformal invariants. Proceedings of the Symposium: Elie Cartan et les mathématiques d'aujourd'hui, Asterisque, to appear. | Numdam | MR | Zbl

[12] F. Friedlander: The Wave Equation on a Curved Space-time. Cambridge University Press (1975). | MR | Zbl

[13] P. Gilkey: The Index Theorem and the Heat Equation. Publish or Perish, Boston (1974). | MR | Zbl

[14] P. Gilkey: Spectral geometry of a Riemannian manifold. J. Diff. Geom. 10 (1975) 601-618. | MR | Zbl

[15] P. Gilkey: Lefschetz fixed point formulas and the heat equation, in Partial Differential Equations and Geometry, C. Byrnes (ed.), Lecture Notes in Pure and Applied Mathematics, Vol.. 48. Marcel Dekker Inc., New York (1979). | MR | Zbl

[16] P. Gilkey: The spectral geometry of the higher order Laplacian. Duke Math. J. 47 (1980) 511-528. | MR | Zbl

[17] P. Gilkey: Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem. Publish or Perish, Wilmington, Delaware (1984). | MR | Zbl

[18] P. Günther and V. Wünsch: On some polynomial conformal tensors. Math. Nachr. 124 (1985), 217-238. | MR | Zbl

[19] S. Hawking: Zeta function regularization of path integrals in curved spacetime. Commun. Math. Phys. 55 (1977) 133-148. | MR | Zbl

[20] S. Helgason: Differential Geometry, Lie Groups, and Symmetric Spaces. Academic Press, New York (1978). | MR | Zbl

[21] D. Jerison and J.M. Lee: A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds. in Microlocal Analysis. Contemporary Math. 27 (1984) 57-63. | MR | Zbl

[22] Y. Kosmann: Dérivées de Lie des spineurs. Ann. Mat. Pura Appl. (4) XCI (1972) 317-395. | MR | Zbl

[23] Y. Kosmann: Degrés conformes des laplaciens et des opérateurs de Dirac. C.R. Acud. Soi. Paris Ser. A 280 (1975) 283-285. | MR | Zbl

[24] R. Kubawara: On isospectral deformations of Riemannian metrics II. Compositio Math. 47 (1982) 195-205. | Numdam | MR | Zbl

[25] J. Lee: The Fefferman metric and pseudohermitian invariants, preprint. Harvard University (1985).

[26] K. Miller and F. Murray: Existence Theorems for Ordinary Differential Equations. New York University Press (1954). | MR | Zbl

[27] S. Paneitz: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, preprint. M.I.T. (1983).

[28] T. Parker and S. Rosenberg: Invariants of conformal Laplacians, preprint. Brandeis University (1985).

[29] D. Ray and I. Singer: R-torsion and the Laplacian on Riemannian manifolds. Advances in Math. 7 (1971) 145-210. | MR | Zbl

[30] S. Rosenberg: The variation of the Rham zeta function, preprint. Brandeis University (1984). | MR

[31] R. Schimming: Lineare Differentialoperatoren zweiter Ordnung mit metrischem Hauptteil und die Methode der Koinzidenzwerte in der Riemannschen Geometrie. Beitr. z. Analysis 15 (1981) 77-91. | MR | Zbl

[32] R. Seeley: Complex powers of an elliptic operator. Proc. Symp. Pure and Applied Math. 10 (1967) 288-307. | MR | Zbl

[33] P. Seeley: Topics in pseudo-differential operators, in Pseudo-Differential Operators. Centro Internazionale Mathematico Estivo (1969).

[34] V. Wünsch: Konforminvariante Variationsprobleme und Huygenssches Prinzip. Math. Nachr. 120 (1985) 175-193. | MR