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1. Introduction

1. Our work on the relation between the congruence zeta function and
the p-adic analysis began in February, 1958 with the suggestion of J.
Tate that his constant C (described below) may be constructed by p-adic
analytic methods. (For an altemate description of C see [Dw, p. 1

equation (0.1)].)
Let k be a field of characteristic zero complete with respect to a

discrete valuation, with valuation ring £ and residue class field k = D/D.
Let A be an elliptic curve defined over k by an equation

where the ai~D. Letting x = ty we find

and hence there exists a unique solution in k((t)) for y with a pole of
order 3 at t = 0. This solution is of the form

and the coefficients B, lie in 0. Clearly

Let

a differential of the first kind on A. In terms of the uniformizing
parameter t = x/y at infinity we have after integration

where the Di lie in D.
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THEOREM: (J. Tate, 1958, unpublished) :
1. If the reduced curve A defined over k is non-singular and has Hasse

invariant not zero then there exists a unit C in the maximal unramified
extension, K, of k such that exp Cu ( E K[[t]]) has in fact integral
coefficients in K.

2. If k is finite, i.e. k is a p-adic field then the unit root of the zeta
function of the reduced curve A is C03C3-1 where a is the Frobenius automor-
phism of K over k.

2. Explanation of the Tate’s theorem (J. Tate, 1958, unpublished)

Let

Equations (2) and (3) show that S is parameterized by t E D(O, 1-). The
map t~u(t) gives a homomorphism of S into k+. Since k is of
characteristic zero,

for each P E S which is a division point. Since u is a one to one map of
D(0), |03C0| 1) onto itself, u(to) = 0 can only be valid for t. = 0 if to E
D(0, l ’1T 1-). On the other hand it is shown by Lutz [L] that for P E S

and hence if u(t(P0)) = 0 then t(pvP0) ~ D(0, |03C0|-) for suitable v and
so Po is a pth power division point.

Since l+p(t)=D(0,l’)) does have points of finite order, Tate
sought an isomorphism of S into 1 + p such as t H exp 0 - u(t). If one
exists with integral coefficients then it is invertible and gives an isomor-
phism of SK with 1 + DK where is a complete field containing k(03B8).
The exact sequence

together with the fact that for ( l, p ) = 1 both A and A have 12 points of
order 1 shows again that the only division points in S are of p power
order. If there are p points of order p in A then there are only p in S
(as there are in 1+p) and so the isomorphism of Tate could (and in fact
does) exist. If A has no points of order p then there are p2 such points
in S and then the suggested isomorphism is impossible. This explains the
role of the Hasse invariant.
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3. In 1958 (unpublished) we evaluated the Tate constant, C, for the
Legendre model (p ~ 2)

Using t = 1 l lé as parameter at oo, we may write

where

If À lies in an unramified extension of 0 p then the existence of C (again
in an unramified extension) is equivalent (by the Dieudonne criterion
[D]) to congruences

for all s ~ N, (m, p) = 1, where a is the absolute Frobenius. The

consistency of these conditions was demonstrated by means of the
formal congruences

where

By means of these congruences we showed that F(03BB)/F(03BBp) extends to
an analytic element f on the Hasse domain

(This may have been the first application of Krasner’s theory of p-adic
analytic continuation and in particular of his theorem of unicity (C.R.
1954).) Congruences similar to (3.4) are treated elsewhere [Dw 1969, Dw
1973]. Thus if 03C303BB0 = À£, i.e. À is a Teichmuller representative of its
residue class then C(03BB0) ~ K is to be chosen so that
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More generally if 03BB=03BB0 + 03BB1, 1 À,  1 then we must put

where

the point being that 11s is an analytic element on H whose restriction to
D(O, 1-) is as indicated. This may also be expressed by the condition

where v is the unique branch of F(1 2, 1 2, 1, 03BB) at Âo (i.e. the unique
solution of the corresponding second order differential equation) which
is bounded on D(03BB0, 1-) and such that

The object of this note is to explain how the theorem of Tate may be
treated by means of normalized solution matrices.

4. Heuristics

We assume the reduced curve is ordinary.
If wl, w2 are ’eigenvectors’ of Frobenius i.e.

where 03BE1, 03BE2 are daggerized algebraic functions on A and we think of a
as operating on coefficients of the differential forms while 4Y represents
x - xP, then upon integration, setting i x = 03C9j, 03BB, a local abelian in-
tegral, we obtain 

We are tempted to deduce Tate’s theorem by applying Dieudonne’s
criterion to (4.1). There are two questions:

Is 03BE1 bounded by p on a generic disk? (4.3)

Il,À need not be an integral of the first kind. (4.4)
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Our purpose is to show how these objections may be met by means of
the theory of normalized solution matrices of the hypergeometric dif-
ferential equation as explained in Chapter 9 of [Dw]. The present
treatment is based upon the relation between abelian integrals and the
dual space K f [Dw, Chapter 2]. This relation was brought to our

attention by A. Adolphson and S. Sperber.
The results given here go beyond the results indicated above for the

Legendre model but more general results have been formulated for
varieties with ordinary reduction.

5. Notation

LÀ = analytic functions on the complement of sets of the type D(O, £0)
U D(1, ~1) ~ D(03BB-1, ~03BB-1)~D(~, ~~) (where ~i is less than the dis-
tance from i to the remaining elements of (0, 1, À -1, oo}, distance from
oo to be computed in terms of 1/x).

4Yx = xP (The notation distinguishes between the space variable and the
~03BB = XP parameter)

a = absolute Frobenius
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Hasse domain = set of all residue classes where (1.1)a,b,c has a bounded
solution. 

For 1 OE LÀ, 1 03BE 1 gauss = 1 03BE(t) 1 where t is a generic unit.

II. Action of Frobenius on abelian integrals

1. We shall consider the hypergeometric differential equation

in a split case of period one. More precisely we assume

and that either

or

We shall restrict À to the region
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We start by observing that the dual space K f [Dw Chapter 2] consists
of 4-tuples

which by [Dw 2.3./5.7] are essentially a set of local expansions of

abelian integrals. More precisely for v ~ S = (0, 1, 1/03BB, ~&#x3E; we have

where A, B are independent of v, x but do depend upon e. Under the
identifications of [Dw Chapter 14] these abelian integrals are associated
with (à, b, c) == (1 - a, 1 - b, 1 - c). Indeed the meaning of [Dw 2.5.2]
is that

where for x close to v w has the conventional meaning if 03C9 is

holomorphic at v, while otherwise it is defined (uniquely by virtue of
(1.2)) by the condition that its product with f be holomorphic at v.

By hypothesis (1.3) (cf[Dw 4.4.3])

maps Kf,03BBp into Kf,03BB with matrix, B, [Dw 4.5.1] so that (using the
subscript to denote the value of À),

It follows from the definitions that

where

The key point is the existence of estimates for the gauss norms of zo, zl
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1.10 LEMMA :

Subject to 1.4.1

Subject to 1.4.2

The proof parallels an earlier calculation (Dw 1983, Lemma 3.18]. The
full details are given in section 2 below.

In the remainder of this section we assume the validity of these esti-
mates.

Using (1.7) we rewrite (1.9.1) in the form

Let now D(03BB0, 1 ) represent a residue class in the Hasse domain. We
will use the results of [Dw Chapter 9]. Conditions 9.0.1 - 9.0.4 of the
reference are cetainly satisfied. Condition 9.0.5 may be disregarded by
virtue of [Dw 1983, Theorem 4].

Letting Y be the normalized solution matrix of (1.1) we have

(Note that Y is defined over a maximal unramified extension of 0,(ÀO».
We now assume 1.4.1. The main facts are

where [Dw 9.6] u, û, q, T satisfy the conditions

q is an analytic element bounded by unity

on the Hasse domain of (1.1) (1.13.1)
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u(1, 11) is the unique bounded solution of (1.1) on D(Ào, 1 - )

u(03BB)/u03C3(03BBp) extends to an analytic element on the Hasse domain.

uû = Wronskian of (1.1) (1.13.5)

u, û assume unit values on D(03BB0, 1-). (1.13.6)

( u, u~) are the normalized periods of (03C9a,b,c+1, 03C9a,b,c)(1.13.7)

Multiplying (1.11) by YO(ÀP), setting

and defining

we have by virtue of (1.12),

Lemma 1.10 and equation 1.15.1 shows that

and hence by (1.16.1),

We now put
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and so by 1.14.2

We now compute with the aid of 1.16

where

For a E D(Ào, 1- ), x E D(v, 1- ), we have by virtue of Lemma 1.10,
and 1.13.4

It now follows from the criterion of Dieudonné that exp J(03BB, x) is a
power series in a fractional power of T,, with integral coefficients.

Since ( a, b, c) is of Type I, (, , c) is of Type II and hence 03C9,, is
the unique differential of the first kind in 

We now explain the coefficient

in the right hand side of 1.19.
Letting B denote the matrix to be used in (1.8.2) if (a, b, c) were

replaced by (â, b, c), we deduce from [Dw 4.7, 2.5.2]

where B * is the inverse of the transpose of B. From equation 1.12 we
deduce (subject to 1.4.1)
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where

Thus Y is the normalized solution of (1.1),,. Using (1.13) we find the
bounded normalized solution to be 

Thus the coefficient, C(À), is the reciprocal of the normalized period of
the differential 03C9,,03BB. To complete our treatment of the first part of
Tate’s theorem we put (à, b, )  (1 2, 1 2, 1).

The second part of Tate’s theorem is also demonstrated since (1.26)
gives an ’eigenvector’ of a semi-linear transformation with matrix B
corresponding to the ’eigenvalue’ 1. Using Adolphson’s explanation in
the appendix of [Dw] we may deduce the connection between C(03BB0)1-03C3
and the unit root of the corresponding L-function. In the next section we
complete the treatment by verifying 1.10.

2. Detailed estimates

To verify II Lemma 1.10 we use 03BE(i) (i = 0, 1) to denote the two elements
of our basis of Kf, i.e.

and we assert the following bounds:

where

Our treatment is similar to that of the proof of Lemma 3.18 of [Dw
1983] but in that calculation only residues were considered. We consider
the four values of v seperately.
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At r = 0, xp-1G is analytic and hence the principal parts at v = 0 all
vanish.

At v = oo we use [Dw 1983, p. 132 line 1*] ]

where A, B are given by Table 2.4

TABLE 2.4

The principal part at infinity vanishes if either A + BIXP = 0 (i.e.
i = 1) or if ILa  it,, i.e. if condition 1.4.2 II holds. This leaves only the
case in which both i = 0 and 1.4.1 II holds. It is clear from (2.3) that in
this case the coefficients of the principal part are integral. This completes
the treatment of v = ~.

At v = 1 we first compute

where

Now H is analytic and bounded by unity on D(0, 1- ) and so P1(xp-1G)
coincides with Pl of
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where in 2.6 the symbolic coefficients 1, 03C0s serve only to indicate upper
bounds for the magnitudes of the actual coefficients.
An upper bound for the coefficient AS of Tt in 03BE(l)1(xp) may be

deduced [Dw p. 25] from that of Ti in all polynomials of the form

the restriction being that m  1 unless i = 1 and in that case the term
involving m = 0 is the constant term, -1. Thus

the supremum being over all jl, ... , jp, m, m’ such that

For b &#x3E; c, the coefficients of the principal part of xp-1G03BE(l)1 ~ are by
(2.6.1) bounded by

the supremum being over all s, t such that.

The term in (2.8) is clearly bounded from above by 1 fi if s = 0.
Furthermore for s &#x3E; 1 we have by 2.8.1,

the supremum being again over 2.7.3. Now
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and so

We assert

This is certainly the case if

for all m  0. This is clearly valid if b - c + m is a unit. Let then

Since

we conclude that

Since p - 1  03BCb &#x3E; 03BCc  0 the right side of 2.13.1 is a minimal representa-
tive of m mod pr and so

Assertion 2.11 is therefore valid since for r  0

This shows that

if b &#x3E; c. The estimate 17r 1 may be replaced by 1 plon ramification
theoretic grounds (but there is no need to assume that À is restricted to
an unramified extension of Qp).
We now consider the case in which c &#x3E; b. By 2.6.2 the coefficients of

. P1xp-1G03BE(i)1 ~ are bounded by
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We assert

This estimate is by 2.7.1 valid for s = 0, while for 1  s  ILc 
- 

03BCb we see

from (2.7.2) since jp = 0 and m  1 that |As|  |p| 1 unless there exists
m’ = c - b satisfying 2.7.3. Since

the only possible exceptional value of m’ is 1 + ( p -1)(1 + b - c) and
for this value of m’ we have

This coinpletes the verification of 2.17.
We assert

for s  03BCc - ILb’ i = 0, 1. It is enough to show that subject to 2.7.3 we
have

This is certainly valid if

whenever m  1, m  m’  0. To verify this we may assume

The minimal representative of c - b mod p r is ( p r - 1)(1 + b - c) + 1
and so

and since
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we have

which is the assertion 2.22
This completes the proof of (2.20) which together with (2.17) and

(2.16) shows that for b  c

This completes the treatment of the principal part at v = 1. The treat-
ment of v = 1/03BB is similar. We have

where again the coefficients on the right are symbolic.
The coefficient, As, of Ts1/03BB in 03BE~1/03BBp is bounded by that of Ts1/03BB in all

polynomials of the form

We deduce

by verifying that subject to 2.7.3 we have

i.e.

for 0  m’  m. The proof coincides with that of 2.11.
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