@article{CM_1987__61_3_339_0, author = {Buium, Alexandru}, title = {Fields of definition of algebraic varieties in characteristic zero}, journal = {Compositio Mathematica}, pages = {339--352}, publisher = {Martinus Nijhoff Publishers}, volume = {61}, number = {3}, year = {1987}, mrnumber = {883487}, zbl = {0643.14011}, language = {en}, url = {http://archive.numdam.org/item/CM_1987__61_3_339_0/} }
TY - JOUR AU - Buium, Alexandru TI - Fields of definition of algebraic varieties in characteristic zero JO - Compositio Mathematica PY - 1987 SP - 339 EP - 352 VL - 61 IS - 3 PB - Martinus Nijhoff Publishers UR - http://archive.numdam.org/item/CM_1987__61_3_339_0/ LA - en ID - CM_1987__61_3_339_0 ER -
Buium, Alexandru. Fields of definition of algebraic varieties in characteristic zero. Compositio Mathematica, Tome 61 (1987) no. 3, pp. 339-352. http://archive.numdam.org/item/CM_1987__61_3_339_0/
Corps différentiels et modules des variétés algébriques. C.R. Acad. Sci. Paris 299 (1984) 983-985. | MR | Zbl
:Eléments de Géometrie Algebrique. Publ. Math. IHES, Vol. 32. | Numdam
and :Fondements de la Géometrie Algébrique. Sém. Bourbaki (1957-1962). | Zbl
:On deformations of compactifiable complex manifolds. Math. Ann. 234, 3 (1978) 247-267. | MR | Zbl
:On deformations of complex analytic structures, I, II. Ann. of Math. 67 (1958) 328-466. | MR | Zbl
and :Differential Algebra and Algebraic Groups. Academic Press, New York (1973). | MR | Zbl
:First order algebraic differential equations. Lecture Notes in math. 804. Springer (1980). | MR | Zbl
:Integrable derivations. Nagoya Math. J. 87 (1982) 227-244. | MR | Zbl
:Algebraic deformations of polarized varieties. Nagoya Math. J. 31 (1968) 185-247. | MR | Zbl
:Some basic theorems on algebraic groups. Amer. J. Math. 1, 78 (1956) 401-443. | MR | Zbl
:Derivations and integral closure. Pacific J. Math. 16 (1966) 167-173. | MR | Zbl
:Weak positivity and the aditivity of the Kodaira dimension, II: the Torelli map. In: Classification of Algebraic and Analytic manifolds. Birkhäuser (1983) 567-584. | MR | Zbl
: