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Introduction

Let X be a projective variety over an algebraically closed field of charac-
teristic zero. The purpose of this paper is to define the scheme Bir (X) of
birational automorphisms of X and study its structure.

It was Weil [14] who introduced the notion of birational action of an
algebraic group on a variety. Many authors up to today have worked on
such algebraic groups (see Rosenlicht [12], for example).
On the other hand, since the construction of Hilbert schemes due to

Grothendieck [2], a fruitful general philosophy has been established in the
study of certain algebraic objects which appear in algebraic geometry -
subschemes of a given scheme, vector bundles on a given variety, all curves
of fixed genus, polarized varieties, etc. This suggests first to construct the
universal space (scheme) which parametrizes all algebraic objects we are
interested in. The second step is the investigation of this universal parameter
space (and the universal family over it). This philosophy is often quite
essential and useful, and has much advantage over just looking at each
algebraic object separately. Basically we shall follow this principle.

In §1 of this paper, we naively define the scheme Bir(X) which param-
etrizes all the birational automorphisms of X, and treat some formal con-
sequences in §2. It turns out, however, that the scheme Bir(X) has some
nasty properties; it is not a group scheme in general; even when X and X’
are birationally equivalent, Bir(X) and Bir(X’) may not be isomorphic
(see (2.9)).
One way to remedy this situation is to take suitable birational models. In

§3, which is the heart of the present paper, we assume X to be a terminal
minimal model (see §3 for the definition). Then Bir(X) is shown to behave
well by the following theorems.
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(3.3) THEOREM. Let X be a terminal minimal model, Bir(X) and Aut(X) the
schemes defined as in §1. Then
1. Bir(X) is a group scheme in such a way that the multiplication rule is

described as follows: for any pair of k-rational points ([f], [g]) of Bir(X),
the product [f] - [g] coincides with [f 0 g].

2. Aut(X) is an open and closed group subscheme of Bir(X).
3. Aut°(X) = Biro(X) and it is an Abelian variety.

(3.7) THEOREM. Let X be a terminal minimal model.
1. (universality of Bir(X)) The group scheme Bir(X) acts birationally on X.

Suppose we are given a group scheme which is locally of finite type and a
birational action u: G x X ~ X of G on X. Then there exists a
homomorphism of group schemes Q: G ~ Bir(X) such that the action of G
is induced from that of Bir(X) by Q.

2. (birational invariance of Bir(X)) Let X’ be another terminal minimal model
which is birationally equivalent to X. If we fix a birational map cp:
X--- ~ X’, there exists a natural isomorphism of group schemes ~#:
Bir(X) ~ Bir(X’) such that ~# ([f]) = [~03BFf03BF~-1] for [f] E Bir(X).

Under the additional assumption of goodness on X (see (3.10) for the
definition), we have an explicit expression for dim Bir(X):

(3.10) THEOREM (cf. COROLLARY (4.8) where the goodness is not assumed).
let X be a good terminal minimal model and cp = 03A6|mKX| : X ~ Y be the
canonical fibering of X, where m is a suitable positive integer. Then

dim Bir(X) = dim H0(Y, R1 ~* OX)

where q(X): = dim H’(X, OX) and q(Y) := dim H’(Y, OY).

The terminologies shall be explained in §3.
It is conjectured that a variety has a terminal minimal model unless it is

uniruled. Thus the results in §3 are hopefully applicable to all varieties which
are not uniruled.

In §4, where we assume X to be a projective variety which is not ruled, the
structure of the canonical homomorphism Â: Bir0(X) ~ Aut(A) is studied.
Here A denotes the Albanese variety of X (see §4 for the definition of Â).
Thence we derive some results concerning dim Bir°(X) (see THEOREM (4.6)
and its corollaries).
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§1. Scheme structure on Bir(X)

Throughout this paper we consider schemes over an algebraically closed
field k of characteristic zero.

(1.1) Let X be an algebraic variety. A birational automorphism of X is
defined to be a birational map from X to X itself. If a birational auto-

morphism of X is moreover biregular, it is called an automorphism of X.
Let Y be another algebraic variety. To give a rational map f : X --- ~ Y

is equivalent to giving the graph rf c X x Y of f. rf is defined to be the
closure in X x Y of the subset {(x, f(x)) E X x Ylx E dom (f)l, where
dom ( f ) denotes the domain of the rational map f.
Given a rational map f : X - - - ~ X, f is a birational automorphism if

and only if the graph ri C X x X is a birational correspondence, i.e. letting
Pi: X x X - X(i = 1, 2) be the projection to the i-th factor, Pilr/: 0393f ~ X
are birational morphisms for i = 1, 2.

(1.2) Let X be a projective variety. Define the abstract groups:
- Aut(X) : the group of automorphisms of X;
- Bir(X) := the group of birational automorphisms of X.
Bir(X) contains Aut(X) as a subgroup.
Aut(X) has a natural structure of a group scheme (see (2.3)). In particular

it is finite dimensional.

On the other hand, Bir(X) can be a bit strange; for example Bir(Pn) is
"infinite dimensional" for n ~ 2, thus far from being a group scheme. More
precisely, for any positive integer m, the additive algebraic group Gâ acts
birationally and effectively on pn.

Nevertheless, the notion of "algebraic group contained in Bir(X)" has
traditionally been defined and studied; an algebraic group G is said to be
contained in Bir(X) if G acts on X birationally and effectively (see (3.6) for
the definition of birational action).

(1.3) Assume that X is a curve or surface which is non-singular and projective.
If X is a curve, Bir(X) = Aut(X).
In case X is a surface which is not ruled, X has the uniquely determined

minimal model Xmin. Then we have

Bir(X) = Bir(Xmin) = Aut(Amin),

which can be different from Aut(X). Since Aut(Xmin) is a group scheme, Bir(X)
can also be considered to be a group scheme by the above identification.

(1.4) Let X be a projective variety. With (1.2) and (1.3) in mind, we may
well suppose that the abstract group Bir(X) inherits some algebraic structure,
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which is something like a group scheme (and in particular finite-dimensional)
in case X is not uniruled.

Here remember the newly developing theory of minimal models for higher
dimensional varieties (see Mori [10], Reid [11] and Kawamata [5]). The
working hypothesis of the theory is the minimal model conjecture:
- Any variety X which is not uniruled has a terminal minimal model.
The meaning of the terminology will be explained in (3.2).
Even if we assume X to be a terminal minimal model, Bir(X) ~ Aut(X)

in general because of the existence of "elementary transformations". (Such
examples can be found in Beauville [18], for instance.) However, we shall see
that Bir(X) has a natural structure of a group scheme in case X is a terminal
minimal model.

(1.5) We shall quickly review the theory of Hilbert schemes (see Grothendieck
[3] for details).
Let X be a projective variety. For a locally Noetherian scheme S, let

HilbX(S) := {closed subschemes Y c X x S,

which are flat over S.}.

This defines a contravariant functor from the category of locally Noetherian
schemes to the category of sets. The fundamental theorem asserts that
this functor is representable by the Hilbert scheme Hilb(X), which is a
disjoint union of at most countably many projective schemes. In other
words, there exists a closed subscheme (called the universal family) Y 
X x Hilb(X) which is flat over Hilb(X) and satisfies the following uni-
versal property: given a closed subscheme Z oe-* X x S, flat over S,
there is a uniquely determined morphism u: S ~ Hilb(X) such that Z
is induced by u, i.e., Y x Hilb(X) S = Z as closed subschemes of X x S.

(1.6) DEFINITION. Let Xbe a projective variety, Hilb(X x X) be the Hilbert
scheme of X x X and p;: X x X ~ X be the projection to the i-th factor for
i = 1, 2. There exists the universal family Z  X x X x Hilb(X x X),
flat over Hilb(X x X):

where p3 denotes the projection to the third factor and x the restriction of p3
to Z. For a point t E Hilb(X x X), define k(t) to be the residue field of the
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local ring (9Hilb(X x X),t at t, Z, to be the fiber of 03C0 at t and Xk(t) := X Qk k(t). Let

is a birational correspondence.};

is a biregular correspondcnce.}.

Here we define a closed subscheme Z, c Xk(t) x k(t) Xk(t) to be a birational
correspondence (resp. biregular correspondence) if and only if Z, is a

geometrically integral subscheme and both projections pi|Zt : Zt ~ Xk(t)
(i = 1, 2) are birational morphisms (resp. isomorphisms).

(1.7) PROPOSITION. Under the above definitions, Bir(X) and Aut(X) are both
open subsets of Hilb(X x X).

Proof Since 03C0 is flat the set

S := {t E Hilb(X x X)|Zt  Xk(t)  k(t) Xk(t) is a subscheme which is
geometrically integral and dim Zt = dim Xk(t).}

is open in Hilb(X x X) by Grothendieck [2], IV.
Take an ample line bundle L on X. For a point t E S, the first projection

p1,t := pl Iz,: Zt -+ Xk(t) is surjective if and only if the intersection number
(p1,t* L)n &#x3E; 0 where n = dim X. Under this condition,

Thus p1,t: Zt ~ Xk(t) is a birational morphism if and only if (p*,L)n 1, = (L)n.
The intersection number (pttL)n is constant on each connected component
of S. Therefore the set

S1 := {t E S}p1,t : Zt - Xk(t) is a birational morphisme

is an open subset of S. Arguing similarly for p2, we see that the set

S2 := {t ~ Slp2,t: Zt - Xk(t) is a birational morphisme

is also open in S. Since Bir(X) = S1 n S2 , we conclude that Bir(X) is an
open subset of Hilb(X x X).
The claim for Aut(X) follows from Grothendieck [2], III.
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(1.8) DEFINITION. Let X be a projective variety. The scheme structures of
Bir(X) and Aut(X) are defined as open subschemes of Hilb(X x X). They
are called the scheme of birational automorphisms and the scheme of
automorphisms, respectively. The restriction to Bir(X) of the universal
family over Hilb(X x X) will be denoted by ï’:

There is a 1-1 correspondence between the set of k-rational points of
Bir(X) (resp. Aut(X)) and the set of birational automorphisms (resp.
automorphisms) of X.

§2. First properties of Bir(X)

In this section, we let X be a projective variety unless otherwise stated.

(2.1) DEFINITION. Let S be a locally Noetherian scheme. A flat family of
birational automorphisms (resp. automorphisms) of X over S is a closed
subscheme Z  X x X x S, flat over S and such that for all points
t E S, the fibres Z, over t are birational correspondences (resp. biregular
correspondences).

(2.2) PROPOSITION (universality of Bir(X), resp. Aut(X)). Given a flat family
of birational automorphisms (resp. automorphisms) i: Z  X x X x
S - S over a locally Noetherian scheme S, there exists a uniquely determined
morphism u: S ~ Bir(X) (resp. u: S ~ Aut(X)) such that i: Z ~ S is

induced from the universal family by u.

Proof. Clear from the definition of Bir(X) (resp. Aut(X)) and the univer-
sality of Hilb(X x X).

(2.3) PROPOSITION. Aut(X) has a natural structure of a group scheme.

Proof. Standard formal arguments using the universality of Aut(X) prove
the assertion (cf. (2.5)).
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REMARK. In case char k = 0, Aut(X) is smooth.

(2.4) DEFINITION. For a birational automorphism fi X --- - X, denote
by [f] the corresponding k-rational point of Bir(X).
The irreducible component of Bir(X) (resp. Aut(X)) containing the point

[id], with the reduced subscheme structure, shall be denoted by Bir0(X)
(resp. Aut’(X». We obtain four schemes:

Aut0(X) is a connected algebraic group and Bir0(X) contains Aut0(X) as an
open subscheme.

(2.5) PROPOSITION. Let X be a projective variety. The group scheme Aut(X)
acts naturally on Bir(X) from the left. More precisely, there exists a morphism
of schemes

such that

for k-rational points [oc] E Aut(X) and [f] E Bir(X).

REMARK. We have a similar action from the right.

Proof. We use the notation in (1.8). The universal family of automorphisms
of X over Aut(X) gives rise to an isomorphism

over Aut(X).
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Consider the following diagram:

where

p34 := the natural projection to the factor Aut(X) x Bir(X),
7r" := idAut(X) X n,

i := soj where j: Aut(X) x 0393  Aut(X) x X x X x Bir(X) is

the product of idAut(x) and the closed immersion r « X x X x

Bir(X), and s is the isomorphism Aut(X) x X x X x Bir(X) 
X x X x Aut(X) x Bir(X) which sends the closed point ([03B1], x,
y, [.11) to (x, Y, M, [f]),

~ := idX X ~ X idBri(X),
0393 := the closed subscheme of X x X x Aut(X) x Bir(X) which is

isomorphic to Aut(X) x r via ~,
9 := the induced isomprohism Aut(X) x 0393 ~ r.

Then

defines a flat family of birational automorphisms.
By (2.2), we obtain a morphism 6: Aut(X) x Bir(X) ~ Bir(X) such that

the family n’ - ~’-1 is induced by 6 from the universal family 03C0. We see

immediately that

for [a] E Aut(X) and [f] E Bir(X) from the construction.

(2.6) DEFINITION. Let Z and Z’ be two reduced schemes locally of finite type
over k. A rational map from Z to Z’ is defined to be a morphism f U ~ Z’
where U is an open subset of Z containing the generic point of each
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irreducible component of Z. Note that if f: Z - - - - Z’ and g: Z’ - - - ~ Z"
are rational maps and f is dominating, the composition g03BFf: Z --- ~ Z"
can be defined.

(2.7) PROPOSITION. Let X and X’ be two projective varieties which are

birational. Fixing a birational map qJ: X --- ~ X’, we can construct a
rational map

satisfying

for any k-rational point [f] E U, U being an open dense subset of Bir(X)red.
Here the symbol red denotes the reduced part.

Proof. Denote by 03C0: r  X x X x Bir(X) - Bir(X) the universal

family. Take an irreducible component C or Bir(X) and consider it as a
reduced subscheme. Restricting the base of 03C0 to C, we have a flat family
03C0C: 0393C  X x X x C ~ C of birational automorphisms of X.

Let 03C0’C: Fi  X’ x X’ x C ~ C be the strict transform of 0393C. Over
some open subset U of C, xh is flat family of birational automorphisms of
X’. By the universal property of Bir(X’), a morphism u: U ~ Bir(X) is

induced. If C varies over all the irreducible components of Bir(X)red, we
obtain the desired rational map ~#: Bir(X)rea ---~ Bir(X’)red.

(2.8) COROLLARY. If X and X’ are birationally equivalent projective varieties,
dim Bir(X) = dim Bir(X’) (possibly infinite).

(2.9) REMARK. It may actually occur that X and X’ are birational while
Bir(X) and Bir(X’) are not isomorphic.
For example we let A be an abelian variety of dimension n ~ 2, and

J1: A ~ A the blow-up of a point p E A. Then dim Bir0(A) = n but dim
Bir’(Â) = 0, thus Bir(A) and Bir(Â) are not isomorphic.

Bir(Â) is not a group scheme. In fact, dim Biro (A)  dim Bir(A) = n,
hence Bir(A) is not even equi-dimensional.

(2.10) REMARK. Let X be a projective variety over k. Demazure [ 15] defined
a functor Psaut(X) as follows:
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for any locally Noetherian scheme S over k,

Psaut(X) (S) := {rational maps f X x S - X x S with inverse rational
maps such that the domain of f intersects with the fiber X, of any point
s G S.J.

Contrary to this we are restricting our attention to a subfunctor:

Bii(X)(S) := {flat families of birational automorphisms of X over S}.

The merit of our approach is that the subfunctor is representable by the
scheme Bir(X), giving us a clear picture of what this functor looks like. The
author would like to express his gratitude to Professor Y. Namikawa for the
information about Demazure’s works.

§3. Bir(X) of a terminal minimal model X

(3.1). Let X be a normal projective variety of dimension d. We denote by
Zd-1 (X ) the group of weil divisors of X, and by Div(X) the group of Cartier
divisors of X.

We have a natural injection Div(X) ~ Zd- 1 (X). An element D E Zd-1 (X) (8)
Q is called a Q-divisor. A Q-divisor D is called Q-Cartier if D is in the image
of the map Div(X) (8) Q -+ Zd-1(X) ~ Q.

There is a 1-1 correspondence between the isomorphism classes of
reflexive sheaves of rank one on X and the linear equivalence classes of weil
divisors on X. For a Weil divisor D, the corresponding reflexive sheaf is
denoted by (9,(D). By Kx we mean the canonical divisor of X, that is, the
Weil divisor satisfying (9,(K.) = (03A9dX)**, the right hand side denoting the
double dual of nd. We shall also write 03C9[s]X instead of (!)x(sKx).

(3.2) DEFINITION (Reid [11]). Let X be a normal projective variety, and
f Y - X be a resolution of singularities of X.
X is said to be a terminal minimal model if the following three conditions

are satisfied:
1. The Weil divisor Kx is Q-Cartier, i.e. for some positive integer r,

03C9[r]X = (D x(r Kx) is an invertible sheaf.
2. For an integer r satisfying (1), writing

where Ei (i = 1, ..., N) vary all the prime divisors on Y exceptional
with respect to f, we have ai &#x3E; 0 for all i.
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3. The Cartier division rKx is nef, in other words, the intersection number
(03C9[r]X 2022 C) is non-negative for any irreducible curve C in X.

This definition is iedependent of the choice of a resolution f’: Y ~ X.
We note that a terminal minimal model X is not uniruled i.e., there does

not exist a dominating rational map cp: Y - X where Y is a ruled variety
such that dim X = dim Y.

(3.3) THEOREM. Let X be a terminal minimal model, Bir(X) and Aut(X) the
schemes defined as in §1. Then
1. Bir(X) is a group scheme in such a way that the multiplication rule is

described as follows: for any pair of k-rational points ([11, [g]) of Bir(X),
the product [11 . [g] coincides with [f 0 g].

2. Aut(X) is an open and closed group subscheme of Bir(X).
3. Aut0(X) = Bir0(X) and it is an Abelian variety.

We first prove a lemma.

(3.4) LEMMA. A birational automorphism, f X - - - ~ X of a terminal minimal
model X is an isomorphism in codimension 1.

Proof. Resolve the indeterminacy of f and the singularities of X by a proper
birational morphism a: X’ - X. We put := fo ce and obtain the following
diagram:

Since X has only terminal singularities, we have

where E03B1 (resp. E03B2) is an effective Q-divisor such that Supp (E« ) (resp.
Supp (Ep)) coincides with the union of all the exceptional divisors of a (resp. /3).
By Fujita’s theory of Zariski decompositions (see Fujita [1]), (3.4.1) and

(3.4.2) both give the Zariski decomposition of Kx’. Thus 03B1*KX = f3* Kx
in Div (X) Q9 Q and Ea - E03B2. The latter equality implies that f is an
isomorphism in codimension 1.
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(3.5) Proof of Theorem (3.3). Take an arbitrary birational automorphism
f of X. We shall evaluate dim T[f] where [ f ] denotes the point of Bir(X)
corresponding to f, and T[f] the Zariski tangent space of Bir(X) at [ f ].

Since f is an isomorphism in codimension 1, there are Zariski open subsets
Xo and X’0 of X such that codim (XBX0) ~ 2, codim (XBX’0) ~ 2 and f
induces an isomorphism fo : Xo Xo’.

Let 0393f ~ X x X and rio c Xo x X’0 be the graphs of f and f0 respectively
and 0394X0 c Xo x Xo be the diagonal. Then we get:

Here p, denotes the first projection.
Let I be the defining ideal sheaf of rf in X x X. Denote by N0393f/X X

the normal sheaf of 0393f in X x X, which is defined to be the sheaf

HomO0393f (I/I2 , (9r f ). Then we have

where 8xo indicates the tangent sheaf of Xo.
Consider the composition of the maps:

where r is the restriction. The last isomorphism holds because 0398X is a

reflexive sheaf as the dual of the coherent sheaf Qi (see Hartshorne [19], for
example). Since N0393f/X X is a torsion-free sheaf, r is injective. Using
T[f] ~ H0(0393f N0393f/X X), we get
dim T[f] ~ dim H0(X, 8x) = dim Aut(X) .

On the other hand, dim[f] Bir(X) ~ dim Aut(X) since Aut(X) acts on
Bir(X) freely ((2.5)). Thus Bir(X) is non-singular at [f] and dim[f] Bir(X) -
dim Aut(X).
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(3) follows from Bir0(X) ~ Aut0(X) and the fact that Aut0(X) is an

Abelian variety since X is not ruled (see Rosenlicht [12]).
For any point [f] E Bir(X), the dimensions of [f] 2022 Aut0(X) and

Aut0(X) 2022 [ f are both equal to dim Aut0(X) = dim[f] Bir(X). Thus the two
subvarieties must coincide and it is the connected component of [f]. Hence
we have three isomorphisms:

As schemes we can write

where II denotes disjoint union of schemes, and [f] denotes the left coset of
[f]. Hence Bir(X) contains Aut(X) as an open and closed subscheme.
We now show (1). Taken any two components [f] 2022 Aut0(X) and

[g] - AutO(X) of Bir(X).

composition of

where p°: Aut0(X) x Aut0(X) ~ Aut0(X) denotes the multiplication of
the group scheme Aut0(X). Glueing p together for all components, we define
a morphism 03BC: Bir(X) x Bir(X) - Bir(X) which maps a point ([f], [g]) to
[f03BFg], the point corresponding to the composition of f and g as birational
maps.
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We also define the inversion r Bir(X) ~ Bir(X). This is obtained by
glueing the following morphisms for all components [f] 2022 Aut0(X):

Here i° : Aut0(X) ~ Aut0(X) indicates the inversion of Aut0(X). We denote
by e: Spec k - Bir(X) the identity as usual. Then (03BC, i, e) naturally satisfies
the axioms of group scheme. Thus (1) is proved.

(3.6) DEFINITION (Weil [14]). Let G be a group scheme which is locally
of finite type, and X be a projective variety. We say that G acts on X
birationally (from the left) if a dominating rational map 6: G x X - - - - X
is given and satisfies the law of action (from the left) at the generic point of
each irreducible component of G. To fix the notion, we only consider left
actions.

We can show that, using THEOREM (3.3), for a terminal minimal model X,
the group scheme Bir(X) acts birationally on X.

(3.7) THEOREM. Let X be a terminal minimal model.
1. (universality of Bir(X)) Suppose we are given a group scheme which is

locally of finite type and a birational action 6: G x X --- ~ X of G on
X. Then there exists a homomorphism of group schemes Q: G - Bir(X)
such that the action of G is induced from that of Bir(X) by Q.

2. (birational invariance of Bir(X)) Let X’ be another terminal minimal
model which is birationally equivalent to X. If we fix a birational map cp:
X --- ~ X’, there exists a natural isomorphism of group schemes ~# :
Bir(X) ~ Bir(X’) such that ~#([f]) = [~03BFg03BF~-1] for [f] e Bir(X).

Proof
1. Note that for all g E G, the domain of 0" intersects with {g} x X. Thus
we have a natural morphism of abstract groups Q: G - Bir(X). We shall
show that this is in fact a homomorphism of group schemes.

Let 039303C3 be the graph of 03C3. We have a family of birational automorphisms
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of X:

where n denotes the induced projection.
Restricting n to some open subset U of the connected component Go of

G containing [id], we have a flat family 03C0|03C0-1(U): 03C0-1(U) ~ U.
By the definition of Bir(X), we have an induced morphism Q-: U ~

Bir(X). Taking any point g E G, we consider the following commutative
diagram:

where og is the induced morphism from Q’ via the isomorphisms Lg and LQ(g) .
This means that Q is a morphism on [g] U. Since [g] U covers G as g varies
in G, we see that Q is a morphism from G to Bir(X).

2. Bir(X) acts on X birationally. Via cp, this action gives rise to a birational
action of Bir(X) on X’. Using (1), we obtain a naturally induced homomor-
phism of group schemes ~# : Bir(X) - Bir(X’). On the other hand, we also
get a homomorphism (~-1)# : Bir(X’) ~ Bir(X) which is induced similarly
by ~-1 : X --- - X. It is clear that ~# and (~-1)# are inverses to each
other.

(3.8) COROLLARY. A birational action of a connected algebraic group G on a
terminal minimal model X is in fact a biregular action.

Proof The image of the induced homomorphism Q: G - Bir(X) is con-
ained in Bir°((X) = Aut0(X).

3.9) DEFINITION. A terminal minimal model X is called good if KX is
emi-ample, i.e., mKx is a Cartier divisor which is generated by global
actions for some positive integer m.
In this case we can talk of the canonical fibering of X which is uniquely

etermined as follows: take a positive integer m such that the linear system
nKX| is base-point free and the associated morphism 03A6|mKX| : X ~ Pdim|mKX|
subject to the following conditions:



138

1. The image Y of 03A6|mKX| is a normal variety;
2. The induced morphism ~: X ~ Y is a fiber space, i.e., a general fiber of

cp is irreducible.

The fiber space ~: X ~ Y thus obtained is independent of the choice of m
so long as the two conditions above are satisfied. This is called the Iitaka
fibration or the canonical fibering of the good terminal minimal model
X. Note that dim Y = K(X) ( - the Kodaira dimension of X) and Y has
only rational singularities (see Kollar [8]). For the definition of Kodaira
dimension, we refer to Iitaka [4].

REMARK. The notion of goodness of a (not necessarily terminal) minimal
model was introduced by Kawamata [6]. He proved that the goodness is
equivalent to the condition 03BA(X) = v(X) (:= the numerical Kodaira dimen-
sion). He conjectured that a minimal model is in fact good. It can be proven
that if X is a good minimal model and X’ is another minimal model

birationally equivalent to X, then X’ is also good.

(3.10) THEOREM (cf. COROLLARY (4.8) where the goodness is not assumed).
Let X be a good terminal minimal model and cp = 03A6|mKX|: X ~ Y be the
canon ical fibering of X, where m is a suitable positive integer. Then

where q(X) := dim H’ (X, (9,) and q(Y) := dim H1(Y, (9y).

Proof. Every birational automorphism of X gives rise to an automorphism
of H0(X, OX(mKX)). We thus have a morphism of group schemes:

Since the component Bir°(X) is an Abelian variety and GL(H0(X, (9,(mK,»
is a linear algebraic group, Q is constant onBir0(X) = Aut0(X). Thus we
have

dim Bir(X) = dim Aut0Y(X).

Here Aut0Y(X) denotes the identity component of the group scheme
Auty(X), which is the scheme parametrizing all the birational automor-
phism of X over Y. AutY(X) can be defined similarly as Aut(X). The tangent
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space of Aut0Y(X) at the point [id id H0(X, 0398X/Y). By Kawamata [7], there
exists an isomorphism ~*0398X/Y  R1~*OX. Hence

dim Bir(X) - dim H0(Y, R1 ~*OX).

On the other hand we can prove

where ~ denotes isomorphism in the derived category.
To show this, we take a general member D E |mKX| and construct the

associated cyclic cover

where we make ~m-1j=0 O(-jKX) into an (9,-algebra by the morphism
. OX(-mKX) ~ Wx induced by D. Kawamata [6] proved that X’ has only
rational Gorenstein singularities. Thus we have

by Kollâr [8]. By Grothendieck duality we see

Hence R(~ 2022 n)*wx’ = ~m-1j=0 R~*(03C9[j+1]X). Taking the direct summand cor-
responding to j = m - 1 and noting that the invertible sheaf 03C9[m]X is the

pull-back of a line bundle on Y, we deduce (3.10.1) from (3.10.2). Thus

(3.11) COROLLARY (cf. Matsumura [9]). Let X as above and G be a group
scheme locally of finite type acting birationally and effectively on X. Then

Proof. There is an induced injective homomorphism of group schemes 2:
G - Bir(X) by (3.7).
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§4 Relation with Albanese maps

We recall a theorem of Nishi and Matsumura:

(4.1) THEOREM (Matsumura [9]). Let G be an Abelian variety and X be a
projective variety. Assume G acts birationally and effectively on X by a
rational map u: G x X--- ~ X.

Denote by a: X ~ A the Albanese map of X. Then there exists an isogeny
(onto the image) À: G - A such that

whenever both sides are defined.

(4.2) Let X be a projective variety and H be a line bundle on X. We define
a homomorphism

as follows.
Let X = X ~k k[03B5] and fl = H ~k k[03B5] where k[03B5] indicates the ring of

dual numbers. Then 0 E H0(X, 0,) gives rise to an automorphism 0 of X
over k[E] which is the identity on X. The invertible sheaf 03B8*H Q FI-Ion X
is trivial on X and thus defines an element QH(03B8) E H1(X, (9,).
We note that QH is the derivative at [id ] of the morphism ~H:

Aut0(X) ~ Pic0(X), which is defined by CPH([f]) = [f*H @ H-1] .

(4.3). In the following throughout this section, X is a projective variety,
which is not ruled. We denote by a: X ~ A the Albanese map, 0, and OA
the tangent sheaves of X and A, respectively. Fix, once and for all, an ample
line bundle L on A.

The algebraic group Aut° (X) is an Abelian variety (Rosenlicht [12]) and
coincides with Bir0(X); thus by Theorem (4.1), there exists an homomor-
phism of algebraic groups 03BB: Aut0(X) - A which is an isogeny to its image.
We note that 9H: Aut0(X) ~ Pic’(X) is a homomorphism of group schemes
for any H E Pic(X) (cf. [17] p. 117, Corollary 6.4).

(4.4) PROPOSITION Consider the following diagram:
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where 03B1* is a morphism canonically induced from oc.

This diagram is commutative, CPL is an isogeny, and À and 03B1* are isogenies
onto the images. In particular, ~03B1*L is also an isogeny onto its image.

Proof. The commutativity is immediately seen. CPL is an isogeny by [16]. Since
a is the Albanese map, 03B1* is an isogeny of Abelian varieties.

REMARK. Taking the derivatives at [id], we obtain the infinitesimal version:
Consider the following diagram:

Here À* is the derivative of À at [id], 03B1* is the canonical pull-back isomor-
phism, andq, and oa*L are as in (4.2).
Then the diagram is commutative, oL is an isomorphism, and À* and Q03B1*L

are injective. Thus under the identification H(A, OA) - Hl (X, (91), À*
coincides with Q03B1*L .

(4.5) COROLLARY. Assume that
1. X is good terminal minimal model, and
2. Letting 9: X ~ Y be the canon ical fibering, q(Y) = 0.
Then À* and Q03B1*L are isomorphisms.

Proof. In this case, dim H0(X, Ox) = q(X) by Theorem (3.10).

(4.6) THEOREM. Assumptions and notations as in (4.3). The map 9,:

Aut0(X) ~ Pic0(X) is an isogeny onto the image in each of the fo ll o wing cases:
1. H is an ample invertible sheaf on X.
2. A - 03B1*(L), where L is an ample invertible sheaf on A.

Proof. (2) was proved in Proposition (4.4). Since ~kH = (CPH)k for any
invertible sheaf H and integer k, we may assume that H is very ample to
show (1). Let X ~ PN be the embedding of X by |H| . The kernel ~H 1 ([(9x
of the map ~H : Aut0(X) ~ Pic0(X) consists of the automorphisms f of X
which come from automorphisms of pN:

Since Aut(PN, X) is a linear algebraic group as a subgroup of AutO(PN), it
must be discrete (Rosenlicht [12]); thus ~H-1([OX]) is also discrete, hence OH
is injective.
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(4.7) COROLLARY. For a projective variety X which is not ruled, dim Bir0(X) ~
dim Hl (X, (Dx).

(4.8) COROLLARY. For a terminal minimal model X (which is not assumed to
be good), dim Bir(X) ~ q(X).

Proof. dim Bir(X) - dim Aut0(X) by Theorem (3.3).
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