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0. Introduction

In this article, a condensed version of [B1], we study the scheme of mor-
phisms of given degree d from an elliptic curve X to a Grassmannian
Gr (p, E), and we obtain some results about coherent sheaves over an
elliptic curve which may seem interesting for their own sake. The prime
motivation resides in the theory of o--models, which led specialists to con-
sider the ’manifold’ of harmonic maps S2 ~ s2n. By means of the Calabi
lifting, this ’manifold’ is interpreted as a subscheme of the scheme of
algebraic maps from P1(C) to the quadratic Grassmannian QG (C2n+1).
Hence a study of algebraic maps from P1(C) to a Grassmannian; J.-L.
Verdier showed that for a fixed degree they constitute a smooth, connected
quasi-projective variety. It is natural to replace S2 by a torus S1 x SI, that
is to consider maps from a genus 1-curve to a Grassmannian.

After introducing a few notations in §0 we recall some results about
indecomposable sheaves over an elliptic curve X which we shall use later on
(§ 1 ). Those results were proved by Atiyah for the most part [A], but they are
more readily understood with the help of the notion of semi-stability. They
are given a relatively short and self-contained proof in Appendix A. In §2,
we associate with any matrix M E SL2(Z) a so-called Fourier transform
functor FM: D(X) ~ D(X), D(X) denoting the derived category of Coh (X).
Those functors generalize the ’usual’ Fourier transform functor introduced
by Mukai [M], and define an action of SL2 (7L) on D(X) modulo the shift,
which is evoked in [M]. The Fourier transform functors FM help understand
the structure of Coh (X), and they allow one to ’juggle with ranks and
degrees’, an indispensable trick in §4. The proof of our Theorem 3 about
Fourier transforms is given in Appendix B. Our §3 is devoted to the

study of topological properties of the scheme Md(X; p, n) of morphisms of
degree d from the elliptic curve X to the Grassmannian Gr ( p, n) of rank
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p-subspaces of a rank n-vector space. By means of a rather simplistic
stratification of that scheme, we find that, although it is always connected,
it may have many irreducible components if d  n. In any case, we can list
them and compute their dimensions (Theorem 5, Corollaries 1 and 2).
Lastly, in §4 we consider the following problem. Any closed point f E
Md(X; p, n) defines a short exact sequence:

where E is a rank n trivial bundle over X. Given two sheaves V, Q over X,
does there exist, f ’such that J.j ~ V and Qf ~ Q? Over P’ 1 (C), Verdier proved
that this is always the case under obvious assumptions. Over an elliptic
curve, the problem is harder to tackle, so we restrict our attention to the case
where V and Q are semi-stable (but we allow E to be any semi-stable sheaf
over X). Even in that case, the results we obtain are only partial (Theorem
6, Corollary 3) but they give further insight into the structure of Md(X; p, n).
The gist of Corollary 3 is that almost any reasonable V and Q co-occur,
provided that d &#x3E; n, but if d = n, there is a one-to-one correspondence
between co-occurring V and Q’s.

0. Notations

Let k denote an algebraically closed field, X an elliptic curve over k (unless
otherwise specified), Coh (X) the category of coherent sheaves over X, D(X)
its derived category, Pic (X) the Picard group of X, Picd(X) its degree
d-component (for any d E Z), CH (X) the Chow ring of X.
We consider Z2 = Z x Z as a set of vectors ( d), where r is to be seen as

a rank, and d as a degree. We denote by e the set of all vectors (d) such that
r is the rank of a non-zero coherent sheaf over X, and d its degree; so we
have:

For any (rd) e H we shall as a rule denote by h the g.c.d. of r and d, and let
(Q03B4) = 1/h(rd).
The reason for this notation is that we can state the basic properties of

indecomposable sheaves over X in a rather neat way.
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1. Indécomposable sheaves over an elliptic curve

Any coherent sheaf over X is isomorphic to a finite direct sum of indecom-
posable sheaves, which are uniquely determined up to order [Al]. For any
(d) e H, denote by I(rd) the set of classes of indecomposable sheaves of rank
rand degree d over X. Indecomposable sheaves are described by the follow-
ing theorem, due to Atiyah (although it is stated here in a slightly différent
form).

THEOREM 1. (ATIYAH). For any (d) let h = (r, d) be the g.c.d. of r and d, and
let Q = r/h, 03B4 = d/h.

There exists a unique way of associating with any (d) e Jf and any v e Pic X
a class vE(rd) ~ I(rd) so that the following hold:
1. for any d &#x3E; 0, vE(rd) has support at v (considered as a point of X);
2. for any 1 e 7L and any L e Picl(X),

3. for any d, r such that d  r &#x3E; 0, there is a short exact sequence of sheaves
over x:

where ev is the evaluation morphism.
Furthermore, the mapping from Pic X to I(r) which sends v to vE(r) is

one-to-one.

A relatively self-contained proof of this theorem, as well as the one that
follows, may be found in Appendix A.

Semi-stability for sheaves over an elliptic curve

For any non-zero coherent sheaf F over X, we define the slope of F to be the
number 03BC(F) = deg (F)/rk(F) (take the slope of a torsion sheaf to be + (0).
A coherent sheaf F over X is said to be semi-stable (resp. stable) if for any

subsheaf G such that 0 ~ G =1= F we have 03BC(G)  03BC(F) (resp. p(G) 
p(F».
The following theorem describes semi-stable sheaves over X, and gives a

simpler characterization of the sheaves vE(r).
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THEOREM 2. Let X be an elliptic curve over k.
1. All indecomposable sheaves over X are semi-stable.
2. Stable sheaves are those indecomposable sheaves with coprime rank and

degree. Furthermore, if (r) E H and (r, d) = 1, there exists a universal

sheaf E(rd) over PicdX x X such that E(rd)|v X ~ vE(rd) for any v E PicdX.
In other terms, PicdX is the good moduli space for stable sheaves of coprime
rank r and degree d over X.

3. Let (rd) E e and v E Pic X. If h = (r, d) = 1, then vE(r) is the only
stable sheaf with rank r, degree d, and first Chern class v. In general, vE(rd)
is the only indecomposable sheaf with rank r, degree d, containing a copy
of vE(Q03B4).

The existence of a universal sheaf E(r) for (r, d) = 1 has been proved by
Oda [0]. It follows from the first assertion of theorm 2 that semi-stable
sheaves coincide with isocline sheaves, i.e. direct sums of indecomposable
sheaves all of whose slopes are equal.

2. Fourier transform for sheaves over an elliptic curve

We fix a point A in X. This allows us to identify any component of Pic (X)
with X itself, which we consider as an Abelian group with identity element
A. Let D(X) be the derived category of Coh (X), and for any a E 7L, denote
by [a] the functor "shift a places to the left": D(X ) ~ D(X).
For any coherent sheaf P over X x X, flat with respect to projections, we

denote by Sp the functor

(following Mukai). This functor is left-exact, and induces a derived functor

RSp : D(X) ~ D(X). [M].
Lastly, we denote by SL2(Z)+ the set of matrices M E SL2(Z) such that

M(’) E e. We have the following theorem.

THEOREM 3.

1. Let M be a matrix in SL2(Z)+ . There exists a coherent sheaf PM over
X x X, flat with respect to projections, and unique up to isomorphism, such
that the following hold: (P) for any (rd) E :if and v E X,
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and

For i = 0, 1, denote by FiM the functor Ri SPM.
2. For any M E SL2 (Z) we define a functor FM : D(X) ~ D(X), which we

call "Fourier transform associated with M", in the following way: if
M E SL2 (Z) ’ let FM = RFm; otherwise let FM = F_1o F-M, where

F_I = (- IdX)* 03BF [-1].
Then for any two M, M’ E SL2 (Z) there is an isomorphism of functors:

where a = 0 or - 2; furthermore, a = 0 if M, M’ E SL2(7L)+ .

The Fourier transform functors FM generalize the "usual" Fourier trans-
form introduced by Mukai, which is obtained for M = (-10 01). The second
assertion of Theorem 3 gives a concrete interpretation of the action of
SL2 (7L) on D(X) modulo the shift, which is evoked in [M]. A proof of
Theorem 3 may be found in Appendix B.

Now we introduce a few notations. Let y E Q, and let a, fi, Q, 03B4 be the
integers determined by the following conditions: Q &#x3E; 0, y = ôle, 03B103B4 -

f3(l = 1. Denote by M03BC the matrix (03B103B2 Q03B4), and let M~ = I. We define the
functors Fi03BC - FiM and F03BC = Fm,,.
The interesting fact is that for any y ~ Q ~ {~} the functor F° induces

an equivalence of categories between torsion sheaves over X and semi-stable
sheaves of slope p over X. We give an example of application of this.

Unidecomposable sheaves over an elliptic curve

We say that a coherent sheaf F over X is unidecomposable if its decom-
position as a direct sum of indecomposable subsheaves is unique up to the
order of the terms.

THEOREM 4. Let (r) . H, and let F be a coherent sheaf of rank r and degree
d over the elliptic curve X. Let h = (r, d) and J1 = dlr.
1. The sheaf F is unidecomposable if and only if it is semi-stable, and

dim End (F) = h.
2. Unidecomposability is an open condition, and Sh Pic X is a good moduli

space for unidecomposable sheaves of rank r and degree d over X.
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Proof of the theorem. Let F = El + E2 + ... + Ep, each Ei being inde-
composable, and assume that F is unidecomposable. Then for any i ~ j we
have hom (Er , 1;) = dim Hom (Ei, Ei) = 0, and by Rieman-Roch and
semi-stability of the Ei’s this implies: j1(EI) = j1(E2) = ... = j1(Ep) =
p(F), so F is semi-stable. Now let y be its slope. Using the functor n, we
are reduced to studying torsion unidecomposable sheaves; so we assume:
r = 0. For any v, w E X we have: hom (vE(0m), wE(0n)) = inf (m, n) if

v = w, = 0 otherwise. So F is of the form:

with ml + m2 + ··· + mp = d = h, and v, , ... , vp are distinct because
Fis unidecomposable. This is equivalent to saying that end (F) = h, or that
Fis a torsion quotient of OX of degree d = h. So Sh X is a good moduli space
for unidecomposable torsion sheaves of degree h over X, the universal sheaf
being: U(0h) = 0,, where H c Sh X x X is the incidence hypersurface.
Now the theorem follows immediately. To obtain the universal sheaf U(d)

it is enough to identify Pic03B4 X and X, and to apply the relative version of the
functor F) to the sheaf U(0h).
For any v E ShPic03B4 X made up of distinct points vl , ... , vp taken with

multiplicities m, , ... , mp , we have:

REMARK. The second assertion of Theorem 2 shows that ShPic03B4 X is the
coarse moduli space for semi-stable sheaves of rank r and degree d on X; so,
an open subset of this coarse moduli space bears a universal sheaf. This fails
on a curve of higher genus [S].

3. The scheme of maps from an elliptic curve to a Grassmannian

Let E be a k-vector space with finite dimension n, and let p be an integer such
that 0  p  n. The Grassmannian G = Gr ( p, E) of p-dimensional sub-
spaces of É is the smooth projective variety, and we have the well-known
Plücker imbedding:
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On the other hand, there is a universal short exact sequence of vector
bundles over G:

where EG denotes the trivial bundle with fiber E, V, the universal rank p
subbundle, and Q, the universal rank n - p quotient bundle; the tangent
bundle of G is canonically isomorphic to the bundle Hom ( V, Q).

Let X be an elliptic curve over k, and d an integer. We are interested in
the scheme of morphisms of degree d from X to G, that is a scheme M,
together with an evaluation morphism ev: M x X ~ G, of degree d with
respect to X, such that for any scheme N and any morphism 9: N  X~ G
of degree d with respect to X, there is a unique morphism 03A6: N - M making
the following diagram commutative:

Such a scheme exists. We denote it by Md(X; p, E) and let Md(X; p, n) =
Md(X; p, kn). The scheme Md(X; p, E) is quasi-projective and any closed
point f E Md (X; p, E ) identifies with a morphism f X ~ Gr ( p, E) of
degree d. Let v = f * V and Qf = f *Q, so that we have a short exact
sequence of vector bundles over X:

The tangent space of Md(X; p, E) at f is canonically isomorphic to

H0(X; f * T Gr ( p, E)) ~ Hom (Vf, Qf), and if H1(X; f * T Gr ( p, E)) ~
Extl (Vf, Qf) is trivial, then f is a smooth point in Md(X; p, E). (For the
existence and the differential properties of schemes of morphisms, see [G].)
To a closed point.f’we associate two integers Clef) = h0(Vf) and 03B2(f) =

h0(Qf*). As functions of f, Clef) and 03B2(f) are uppersemicontinuous by the
semicontinuity theorem [H]. Therefore, we can define the locally closed,
reduced subschemes Md,b(X; p, E) c Md(X; p, E) whose closed points f are
those morphisms such that 03B1(f) = a and f3(f) = b, a and b being fixed integers.
With those notations, we have the following theorem.

THEOREM 5. Let X be an elliptic curve over k, E a vector space of finite
dimension n over k, p an integer such that 0  p  n, and d E N*. Then:
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1. Ma,bd(X; p, E) is non-empty if and only if 0  a  p, 0  b  n - p and

a + b  n - d;
2. non-empty M3,b (X; p, E)’s form a stratification of Md(X; p, E), the order-

ing on indices (a, b) being induced by the usual partial ordering of N2 ;
3. for any f E Md(X; p, E), TfMd(X; p, E) has dimension nd + Clef) . f3(f).

The second assertion of the theorem means that non-empty Mda,b(X; p, E)’s
are smooth, connected, locally closed subschemes of Md(X; p, E); further-
more, they are disjoint and there union is the whole of Md(X; p, E); lastly,
if Mda,b(X; p, E) is non-empty, its Zarisky closure is the union of all

M;’S(X; p, E)’s with r  a and s  b.
Before proceeding to prove this theorem, we give a description of the

strata M;,b(X; p, E). For (a, b) E N 2 we denote by D a,b (E) the space
Dr(a, n - b, E) of linear flags (0 c A c B’ c E) with dim A = a and
dim B’ = n - b. Then we have

PROPOSITION 1. For any (a, b) E N2 there is a natural, locally trivial fzbration
map

with smooth fiber isomorphic to M3’0(x; p - a, n - a - b).

Proof of the proposition. Consider the universal vector bundle E over D a,b (E)
whose fiber at D = (0 c A c B’ c E) is isomorphic to B’/A. By glueing,
one constructs a locally trivial bundle G over Da,b(E) whose fiber at D is
Gr ( p - a, B’/A) and a locally trivial bundle M over D a,b (E) whose fiber at
D is Md(X; p - a, B’/A). Notice that M is the scheme of morphisms of
degree d from X to fibers of G ~ Da,b(E).
We denote by M0,0 the open subscheme of M whose fiber at any D =

(0 c A c B’ c E) is Md0,0(X; p - a, B’/A), so that M0,0 is a locally trivial
bundle over D a,b (E) with fiber isomorphic to M0,0d(X; p - a, n - a - b).
We shall prove that M0,0 is isomorphic to Mda,b(X; p, E), but we show the
smoothness of the fiber first.

LEMMA 1. For any n, d, p, M3’0(X; p, n) is smooth of dimension nd, or empty.

Proof of the lemma. By upper semicontinuity of ex and f3, Md0,0(X; p, n) is an
open subscheme of Md(X, p, n), so we only have to prove that whenever
Clef) = 03B2(f) = 0, ext1 (Vf, Qf) = 0. By Riemann-Roch, it will follow that
hom (Vf, Qf) - deg Hom (Vf, Qf) = nd, hence the lemma. Now, the short
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exact sequence 0 ~ Vf ~ knx ~ Qf ~ 0 induces an epimorphism Extl (Vf,
knx) ~ Ext1(Vf, Q f). Since ext1(Vf, 14) = n. h1(V*f) = n 2022 h0(Vf) (by Serre
duality) = n 03B1(f) = 0, it follows that extl (Vf , Qf) = 0.
To show that Mda,b(X; p, E) and M0,0 are isomorphic, we associate with

any f in M;,b(X; p, E) a point g in M which we define in the following way.
Consider the flag Df = (0 c Af c B? c E) where Af = H0(Vf), and

B’f = Vect (Vf) is the linear subspace of E spanned by the fibers of Vf. Since
B? is the orthogonal of ¡¡Ü(QJ) in E *, this flag is in Da,l (E). The short exact
sequence

defines a morphism g: X ~ Gr ( p - a, BÍ/Af) of degree d. We have

03B2(g) = 0, because Vf/Af spans B’f/Af, and 03B1(g) = 0 by duality. So g is a point
in the fiber of MI,’ above Df.
Now clearly the map sending f to g is one-to-one between closed points

of MJ,b(X; p, E) and MO,o; by the universal properties of M, it is induced by
a canonical morphism; and since both Md,b(X; p, E) and MO,o are reduced,
the latter being smooth, this morphism is an isomorphism, hence the
proposition.

Proof of Theorem 5
Third assertion. By Riemann-Roch we have hom (Vf, Qf) = nd + ext1(Vf,
Qf) so it is enough to show: extl ( v, Qf) = 03B1(f)03B2(f). This was proved
already when Clef) = 0 (see the proof of Lemma 1); in general, we have a
short exact sequence:

where Af = H0(Vf) and H0(Vf/Af) = 0, as we noticed in the course of the
proof of Proposition 1. Hence an exact sequence:

The short exact sequence O ~ Vf/Af ~ E/Af ~ Qf ~ O arises from
a morphism g E Md(X; p - ex(f), E/Af) with 03B1(g) = 0, so ext1(Vf/Af,
Qf) = 0, and ext1(Vf, Qf) = ext1(Af, Qf) = oc(f) h1(Qf) = ex(f) h0(Qf*) =
03B1(f)03B2(f).

First assertion. Assume that Mda,b(X; p, E) ~ 0. Since d &#x3E; 0, any mor-
phism X ~ Gr ( p, E) of degree d is non-constant, hence 0  a  p and
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0  b  n - p. Now it follows from Proposition 1 that M0,0d(X; p - a,
n - a - b) is non-empty. Let g e Md°° (X; p - a, n - a - b). We have
the following commutative diagram:

where ~ is injective because h0(Vg) = 03B1(g) = 0; hence n - a - b 
d + h0(Qg*) = d, because f3(g) = 0. So the conditions in 5.1 are necessary.
To show that they are sufficient, we use the following lemma.

LEMMA 2. Let f E Ma,bd(X; p, E) and assume: b &#x3E; 0, a + b &#x3E; n - d. Then

f lies in the Zarisky closure of Ma,b-1d(X; p, E).

Proof of the lemma. Assume first that b = 1. Let B’f = Vect Ji, and choose
a line B ~ E such that E = B ~ B;. There is a morphism

hence a morphism 03A6: Hom (Vf, B) ~ Md(X; p, E). If ~ E Hom (Vf, B) then
V03A6(~) ~ V so oc (03A6(~)) = a. But 03B2(03A6(~)) = b = 1 if and only if ç belongs
to the image of the morphism

otherwise 03B2(03A6(~)) = 0. Now hom (Vf, B) - hom (BÍ, B) = Clef) + d -
n + 1 &#x3E; 0; so f = 03A6(0) lies in the closure of Ma,b-1d (X; p, E).

In the general case, we reduce trivially to b = 1 by choosing a linear space
C such that B; ~ CeE and dim C = n - b + 1, and by considering the
natural inclusion Md(X; p, C)  Md(X; p, E).
By this lemma, which we can also use in its dual form (interchanging the

roles of a and b) it is enough to prove that Mp-1,n-p-1d (X; p, E) is no-empty
as soon as d  2. Now by Proposition 1 this is the same as showing that
Md(X; 1, 2) is non-empty, a well-known result: there are morphisms of
degree d: X ~ P1 as soon as d  2.
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Second assertion. We know already that the strata are smooth, and that
the Zarisky closure of any stratum is as announced (by Lemma 2). There
only remains to prove the following proposition.

PROPOSITION 2. The scheme Ma,bd(X; p, E) is connected.

Proof. Thanks to Proposition 1, we can assume a = b = 0. Denote by
Q(n-p) (E) the scheme of quotients of rank n - p and degree d of Ex, so that
Md(X; p, E ) appears as an open subscheme of Q(n-pd)(E) . Now let U be the
open subset of Q(n-pd) (E) of those f such that h0(Vf) = 0. That condition

implies that extl (Vf, Qf) = 0, so U is smooth. Since U contains M0,0d(X; p,
E) it is enough to show that it is connected. The connectedness of U has been
proved by Hernandez [H] in a more general setting. We give a sketch of his
proof adapted to our special case.

Let N be a n - p dimensional subspace of E, and E’ = E/N. Any f E U
defines a map v - E’. Denote by UN the dense open subscheme of U of
those f such that Vf - E’ is injective; there is a natural morphism:

It is well-known that Q(’) (E’ ) is smooth, connected, so it is enough to show
that (D is dominant, with connected fibers. Consider a point h in Q(’) (E’ ),
defined by the short exact sequence

Now h can be in the image of 03A6 only on the open condition that h0(V) = 0.
Assuming that this holds, there is a surjective map

because extl ( V, N) = hom (N, V) = 0. So 03C3-1(i) is a non-empty affine
space; any j ~ 03C3-1(i) is an injection V m E, hence a morphism
03C3-1(i) ~ UN whose image is the fiber of 03A6 at h; so the fiber is non-empty,
connected, hence the proposition.

Corollaries of Theorem 5

Let E be a k-vector space of finite dimension n  2, and let p, d be integers
such that 0  p  n and d  2.
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COROLLARY 1. (smooth points). The smooth points of Md(X; p, E) are the
points f such that ex(f)f3(f) (n - d - a(f) - 03B2(f)) = 0. In particular,
Md(X; p, E) is smooth if and only if p = 1, or p = n - 1, or d = 2.

COROLLARY 2 (Topology, dimensions)
1. If d  n, Md(X; p, E) is irreducible of dimension nd.
2. If d  n, the irreducible components of Md(X; p, E) are the Zarisky

closures Ca’b of the strata Ma,bd(X; p, E) for all (a, b)’s such that 0  a  p,

0  b  n - P, and a + b = n - d.
The dimension of the component Ca,b is nd + ab.
In particular, Md(X; p, E) is irreducible if and only if p = 1, or

p = n - 1, or d = 2 (ie, when it is smooth).
3. In any case, Md(X; p, E) is non-empty and connected.

The corollaries are immediate, except maybe the part concerned with dimen-
sions ; but, thanks to Proposition 1, it is easy to compute the dimension of
a stratum; namely

dim Md,b(X; p, E) - dim Md0,0(X; p - a, kn-a-b) + dim D a,b

4. Short exact sequences of semi-stable sheaves over an elliptic curve

We consider the following problem: given three non-zero semi-stable
sheaves E’, E, E" over the elliptic curve X, such that ch (E) = ch (E’ ) +
Ch (E" ) and 03BC(E’)  J1 (E" ), does there exist a short exact sequence:

We shall see that the non-unidecomposability of the sheaves involved entails
certain restrictions on the existence of such an exact sequence. For simplicity,
we shall assume that E’ and E" are unidecomposable. Of course, we are
especially interested in the case where E is a free sheaf. In this case, the
restrictions are in a sense maximal.

Let E be a semi-stable sheaf of slope y over X. We define the ambiguous-
ness of E, which we denote by amb (E), to be the integer

amb (E) = sup hom (V, E)
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for V ranging over the class of stable sheaves of slope Jl (with the convention
amb (0) = 0). Clearly amb (E) = 1 if and only if E is non-zero and uni-
decomposable ; and amb (E) is maximal (for given rank and degree)
when E is of the form kl 0 V, with V stable and h ~ N. So amb (E)
measures the non-unidecomposability of E. We have the following theorem.

THEOREM 6. Let (d,), (r"d") E e such that 03BC’ = d"Ir’  03BC" = d "/r" and let
(rd) = (r’d’) + d" Let E be a semi-stable sheaf over X of rank r and degree
d, and denote by E’, E" any two unidecomposable sheaves of respective ranks
and degrees r’, d’, r", d " such that ch (E) = ch (E’ ) + ch (EII). Then
1. There exists a short exact sequence (ç) for a suitable choice of E’ and E"

if and only if
(C1) amb (E)  1 /h det ( d r" where h = (r, d).

2. If (C1) holds, then for any choice of E’ one can, find E" such that there exists
an exact sequence (ç) (and conversely).

3. Consider the condition

(C3) E is of the form e Q U, where U is unidecomposable and
n = amb (E) = 1 /h det ( d r"r") .

If (C3) holds, there is a one-to-one correspondence between E’ and E"
such that there exists an exact sequence (03BE).

4. If (CI) holds, but (C3) doesn’t, then for a general choice of E’ and E" there
exists an exact sequence (03BE).

Furthermore, such an exact sequence exists for any choice of E’ and E",
provided that the following stronger condition holds:

(C4) amb (E)  8(h’, h’) - 1/h det (d r"d")
where h’ - (r’, d’), h" = (r", d"), and

REMARK. The formulation of this theorem is rather complicated, because it
contains a large number of assertions; however, we can infer from it the
following simple facts.
1. If an exact sequence of semi-stable sheaves

exists, with 03BC(E’)  03BC(E) then in fact we have
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(This is (CI». Conversely, if this inequality holds, as well as the obvious
compatibility relations between the ranks and first Chern classes of our
sheaves, then an exact sequence (ç) can be found, at least if one allows
E’ (or El!) to move inside its moduli space.

2. When amb (E) is minimal, that is when E is unidecomposable, we get the
following result: for any unidecomposable sheaves, E, E’, E" over X such
that 03BC(E’)  03BC(E), there exists an exact sequence (03BE), provided that the
ranks and first Chern classes are compatible.

3. In the other extreme case, that is when the ambiguousness of E is
maximal, the upper bound for 03BC(E’) is lowest and there are additional
obstructions to the existence of an exact sequence (03BE). This happens when
E is the direct sum of a number of copies of the same stable sheaf.

In the special case where E is free, we obtain the following corollary.

COROLLARY 3. Let X be an elliptic curve over k, E a k-vector space of
dimension n, p an integer such that 0  p  n, and d  2.

Denote by V and Q any two unidecomposable sheaves over X of respective
ranks and degrees p, - d, n - p, d, such that cl (V) + cl (Q) = 0, and let
M(V, Q) be the set of morphisms f E Md(X; p, E) such that Vf ~ V and
Qf ~ Q. Then:
1. If d  n, M( V, Q) is always empty.
2. If d = n, then M(V, Q) is non-empty if and only V is the kernel of the

evaluation morphism of Q.
3. If d &#x3E; n, then M( V, Q) is non-empty for a general choice of V and Q. For

any V there exists Q such that M( V, Q) ~ QS (and conversely).
4. Furthermore, M( V, Q) is always non-empty, provided that d  c(hI, h2)n,

where h1 1 = ( p, d), h2 = (n - p, d) and

Proof of Theorem 6 Assertions 1 and 2. Assume first that there exists a short
exact sequence

Let J1 = J1(E) and consider the matrix M = - MI- E SL2(7L)+. We have
M(’d) = (0-h) so, applying the functor FM to (03BE), we obtain the exact sequence:

otherwise.
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Now, F1E is a rank-zero sheaf, and we have amb (E) - amb (F1M(E)) =
sup,c,, dim F1E 0 k(v). So (M03BE) implies: amb (E)  rk F1E’ = 1/h
(r’d - rd’) = 1 /h det (r’d’ r) . 1 /h det ( d r"d"), hence (C1) holds.

Conversely, assume that (C1) holds, and fix E". Does there exist E’ such
that there is a short exact sequence (03BE)? Applying the Fourier transform
functor (F03BC")-1, we can assume that rk(EI’) = 0.

Let S Hom (E, E"") denote the open subset of Hom (E, E" ) of epimor-
phisms s: E ~ E". It is non-empty, provided that amb (E")  rk(E), which
is the case, since E" is unidecomposable; and it parametrizes a flat family of
subsheaves NS = Ker (s) of E. Denote by u the open Shatz stratum of S
Hom (E, E" ), that is the set of all s E S Hom (E, E") for which the
Harder-Narasimhan polygon of Ns takes its generic value. Let po = 03B40/Q0
denote the maximal slope of any stable subsheaf of OE for s E AY, and
consider the scheme Y- of all stable subsheaves of E of slope po (ie of rank
0o and degree 03B40); with any 6 ~ 03A3 is associated a subsheaf S6 c E. Denote
by Z c E x 0/1 the incidence variety, so that we have a diagram

where p and q are the restrictions of the projections; notice that q is an
epimorphism, and that the fiber p-1(03C3) ~ qp-1(03C3) is isomorphic to an open
subset of S Hom (EIS,, E" ).
Assume 03BC0 = J1; then X has dimension amb (E) - 1 and the fibers of p

have constant dimension hom (EIS,, E") = d"(r - r/h), so we have: rd " =
dim AY K dim Z  amb (E) - 1 + d "(r - r/h). Finally, amb (E) &#x3E;

d "r/h, which contradicts (C1).
So we have 03BC0  J1. For any a e X we have extl (Su, E/Su) = 0, so E is

smooth of dimension doo - rôo . Denote by 03B2 the dimension of the general
fiber of q, so that we have: dim Z = rd" + p. Now for any e X let 03BB(03C3)
be the degree of the torsion part of E/S03C3; it is upper-semicontinuous as a
function of a. For any E N, let Y-’ be the locally closed subvariety of E of
those such that 03BB(03C3) = 03BB. There exists 03BB0 ~N such that dim p-1(03A303BB0) =
dim Z. Now assume that Su c Ns for some s E 0/1. Then Ns/S03C3 is locally free,
and the torsion part of E/S03C3 injects in E". Since E" is torsion unidecompos-
able, there are finitely many subsheaves of E" of degree 03BB0, and all of them
are unidecomposable. If Q is one of them, denote by EQ the subvariety of
E of 03C3’s such that the torsion part of E/S03C3 is isomorphic to Q. There exists



30

Q such that dim p-1(03A3Q) = dim Z, and for any a E LQ,p-I(a) has dimen-
sion hom (EIS,, EI’) = d,"(r - Qo) + 03BB0 if it is non-empty. So we obtain:

Now it is an easy computation to show that if EQ is non-empty, its codimen-
sion in LÀo is 03BB0. Therefore we have:

dim

that is doo - rôo - d"Q0  03B2 + codim, 03A303BB0  0. That implies po K
(d - d")/r = 03BC(Ns) so NS is semi-stable for any s E dit; equalities hold
everywhere, so 03B2 = 0, which means that NS is generically unidecomposable,
and so there exist E’ and a short exact sequence (03BE).

If we fix E’ instead of E", a suitable Fourier transform functor brings us
to the case we have just proved. Hence assertions 1 and 2.

Assertion 3. Assume that (C3) holds, and fix E". There exist E’ and a short
exact sequence:

We have Hom (kn (8) U, E’) = 0, hence an injection

Now end (kn (D U) = n’ end (U) = hom (e (D U, E") so i is an isomor-
phism, and E’ is uniquely determined by (03BE). A dual argument shows that
the correspondance between E" and E’ is one-to-one (one can even show
that it is induced by a Fourier transform [BI]). Hence assertion 3.

Assertion 4. Denote by Q(r"d") (E) the scheme of quotients of rank r" and
degree d " of E; for any f ~ Q ( d:. ) (E) there is a short exact sequence

let u be the open subscheme of Q(r"d") (E) whose closed points are those
such that Vf and 6/arc unidecomposable. Now recall that Sh Pic03B4 X is a good
moduli space for unidecomposable sheaves of rank r and degree d, so we
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have a natural morphism

with image in the smooth hypersurface H defined by the condition

c1(Vf) + Ci(6/) = cl (E). Denote by 03A6 the restriction: u - H. We only
have to show that if (C1) holds, but not (C3), then (D is dominant, and that
it is onto if (C4) holds as well.
As usual, we assume r"’ = 0. Suppose that (C1) holds, but not (C3), and

consider a unidecomposable sheaf E’ of rank r’ and degree d’, and a
subsheaf E’1 of E’ of rank r’ - (J’ and degree d ’ - à’. Let a = det (Q’03B4’ 3)
and n = amb (E). We have n  h’a, and if n = h"oc then E is not of the
form e (D U with U unidecomposable. By grouping indecomposable
summands of E is a suitable way, we can write E = U, ~ ··· ~ Un , where
each U is unidecomposable and rk U1  ···  rk Un. Furthermore, if

n = h’a we can assume: rk U,  rk Un. Now let A = (h’ - 1) oc and

El - Ul ... UA. Then we have amb (E1) = A and in any case rk El &#x3E;

(A/h’03B1)rk(E) = rk El . So by assertion 2 the general morphism E’1 ~ El is
injective with positive-rank, unidecomposable, hence locally free cokernel.
On the other hand, the restriction map Hom (E’, E) ~ Hom (El , E) is onto
(because extl (E’/E’1, E) = 0) so, putting these facts together, there exists an
f ~ u such that E’ ~ Vf and E/El is locally free. We shall show that such a
point f is smooth for C (hence 03A6 is dominant).
By the Kodaira-Spencer maps, we have the following isomorphisms

and

and Tf03A6 identifies with the morphism

where ~’1 and ~"1 are connectants arising from the exact sequence

Now consider the short exact sequence
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We have a commutative diagram

where ~’2 and ô2 are connectants arising from (E2 ) and i is the map

Since E/E’1 is locally free, extl (E/E’1, Qf) = 0 so a; is onto; similarly ô" has
rank 1, so the image of ~’2 ~ ~"2, and a fortiori that of êl’ ~ ~"1, contains a
hypersurface of {0} 0 Extl (Qf, Qf). Since ôl is onto, we conclude:

rk(ô 1 0 ~"1)  h’ + h" - 1, hence the smoothness of 03A6 at f.
Now we assume that (C4) holds. If h’ - 1 or h" - 1, 03A6 is onto by

assertion 2, so we can assume for instance h"  h’ &#x3E; 1, r" = 0 and
amb (E)  (d " - 1 )e,. Consider any E’, E" such that ([E’ ], [E"]) E H, and
let v E supp (E" ). There is a short exact sequence:

with El’ torsion unidecomposable of degree d" - 1. By (C4) there exists a
short exact sequence

with F unidecomposable of rank r’ and degree d’ + 1. Consider E’1 c E’ 
as above. Then there exists an injection E’  F such that F/E’1 is locally
free. We obtain the following diagram:
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Now we have extl (El’, k(v)) = 0 or 1 so E/E’ is isomorphic to E" or
k(v) ~ El . In the first case, we are done. Otherwise, consider the short exact
sequence

and the point fo it defines in Quot (E/E’1). It is enough to show that there
exist points f arbitrarily close to fo such that Qf ~ E", because for such an
f we shall have: Vf ~ E’/E’1 (by stability) hence a short exact sequence

Since E" is the general extension of k(v) by E"1, it is enough to show that so :
E/E’1 ~ k(v) e El’ deforms to a morphism s: E/E’1 ~ El . Now the torsion
part of E/El injects into Er because FIE’ is locally free. Therefore we can
write E/E’1 ~ L Q T, where L is locally free and so (T ) c E"1. Then S0|L
deforms to a morphism L ~ E"because L is locally free, and S0|T deforms
also because it takes its values in the fixed part Er. Hence assertion 3 and
the theorem.

Appendix A

We begin with a few remarks.

1. Let X be a smooth curve, and E E Coh (X) an indecomposable sheaf. Then E is either a
torsion sheaf, or a locally free sheaf. This is because we have a short exact sequence

where Etors is the torsion of E, and E’ is torsion-free, and therefore locally free. Now

Ext’ (E’, Etors ) = 0, so the exact sequence splits.

2. Indecomposable torsion sheaves over X can be described as follows. Let v E X and d ~ N *.
There is a natural short exact sequence

We denote by vE(0d) the quotient OX/OX(-d · v). Then vE(0d) is indecomposable, and all
indecomposable torsion sheaves are obtained in this way. We are going to show that, in the
case of an elliptic curve, all indecomposable sheaves can be constructed starting from inde-
composable torsion sheaves. From now on, X is an elliptic curve.

3. Any indecomposable sheaf over the elliptic curve X is semi-stable. Let E be an indecom-
posable sheaf over X. Any torsion sheaf is semi-stable, so we can assume that E is locally free.
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There is a Harder-Narasimhan flag

where, for any i = 1, 2, ... 1, G, = EIE,-, is a non-zero semi-stable locally free sheaf, and
p(G, ) &#x3E; 03BC(G2) &#x3E; ... &#x3E; p(Gj). For any i, j such that 1  i  j  l, we have 03BC(Gl) &#x3E; 03BC(GJ)
and this implies hom (G,, G) = 0 because G, and G, are semi-stable. By Serre duality, Ext’ (GJ,
G,) = 0, so the Harder-Narasimhan flag splits completely; since E is indecomposable, this
implies 1 = 1, hence E is semi-stable. (For elementary properties of semi-stable vector bundles,
see [Sh] or [B]). Notice that if the rank and the degree of E are coprime, E is stable.

4. Let E, E’ be two indecomposable sheaves over X, and let D(E, E’ ) = rk(E) deg (E’ ) -
rk(E’ ) deg (E). Then if D(E, E’) ~ 0 we have:

hom (E, E’) = D(E, E’ )+

and

This is because by Riemann-Roch we have D(E, E’) = hom (E, E’ ) - ext’ (E, E’). Now if
D(E, E’ )  0, we have 03BC(E) &#x3E; /1(E’) so hom (E, E’) = 0; if D(E, E’ )  0, then

03BC(E)  03BC(E’) so ext’ (E, E’) = hom (E’, E) (by Serre duality) = 0.

We are interested in sheaves generated by sections. They are described in the following lemma.

LEMMA A 1. Let E be an indecomposable sheaf over X. Then E is generated by sections if and only
if

Apart from those cases, E is generically generated by sections if and only if M(E) = 1.

Proof. Let r = rk(E) and d = deg (E). Then if d ~ 0, h°(E) - d+ and h’(E) = d_. Clearly
OX is generated by sections. Now assume d &#x3E; r; for any x E X we have h’ (E Q OX( - ;c)) =
(d - r) _ = 0, so E is generated by sections. Conversely, consider the evaluation morphism
ev: H0(E)X ~ E. If d  r, ev is injective on fibers because for any x E X we have h0(E Q
0,(- x» = (d - r), = 0. In that case, E can be generated by sections only if ev is an
isomorphism, and that implies: E ~ OX. Now there remains to check that for r = d, E is
generically generated by sections, that is: for general x E X, h0(E Q OX(- x) = 0. In other
words, for a general L E Pic, (X), Hom (L, E) = 0. Now that is a special case of the
well-known fact that if E is a semi-stable locally free sheave, there is only a finite number of
classes of stable locally free sheaves F with the same slope, such that Hom (F, E) ~ 0 (see [B],
for instance).

If E is a sheaf generated by sections, we denote by P(E) the dual of the kernel of the evaluation
morphism for E, so that there is a short exact sequence:
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Notice that P(E) is locally free, and that P(E) = 0 if and only if E is free. We have the
following proposition.

PROPOSITION A1. Let (d) E e and assume d &#x3E; r. Then
1. for any E E I(d), P(E) E I(dr-d);
2. the map P: I(d) - I(d d)

is one-to-one;
3. let E, F be two irreducible sheaves of slope &#x3E; 1. There is a natural isomorphism Hom

(E, F)  Hom (P(F), P(E)).

Proof of the proposition. Let E E ICJ with d &#x3E; r, and consider the short exact sequence (*).
By Riemann-Roch and Serre duality, we have h0(P(E)) = d + h0(P(E)*) = d. Now if
r &#x3E; 0, E is locally free and we have the following diagram:

The morphism cp is injective (because h0(E*) = 0), so it is a canonical isomorphism
H° (E)* X H° (P(E)). Therefore, P(E) is generated by sections, and P(P(E)) is canonically
isomorphic to E. Since E is indecomposable, so is P(E). If r = 0, i is generically an iso-
morphism, hence a commutative diagram:

so ç remains a canonical isomorphism H0(E)*  H°(P(E)). We can re-write (*) as:

so P(E) is indecomposable.
So much for assertion 1. For assertion 2, we construct the inverse of P in the following way.

Let F E I(dd’). The evaluation morphism ev: H°(F)x - F is injective, hence a short exact
sequence:

where E = coker (tev). We have a commutative diagram
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As above, one checks easily that 9 is an isomorphism, so F ~ P(E), and E is indecomposable.
Assertion 2 follows immediately.
Now let E, F be as in assertion 3. Any morphism: E - F induces a morphism

H°(E) - H°(F), hence a morphism P(E)* ~ P(F)*, and a morphism P(F) ~ P(E). Con-
versely, any morphism P(F) ~ P(E) induces a morphism H0(P(F)) ~ H°(P(E)). By the
natural identification between H°(P(E)) and H°(E)*, we get a morphism H°(E) - H°(F)
which factors to a morphism E - F.

This defines a natural isomorphism Hom (E, F) ~ Hom (P(F), P(E)) and proves assertion
3.

Now we can construct the indecomposable sheaves E(rd) of Theorem 1. We fix a point A in
X and we proceed by induction on r. The sheaves vE(d) have already been constructed so as
to satisfy the first assertion of Theorem 1. Now assume that vE(r’d’,) has been constructed for
r’  r. Let d be such that r  d  2r; then vE(d-rd) has been constructed already, so by the
third assertion of Theorem 1 we must set

For a general d, there exists a unique 03BB E Z such that r  d + Àr  2r. By the second
assertion, we must set

So we can see by induction that there is only one way of defining sheaves vE(rd). This
construction works out, and by Proposition A 1, it is one-to-one.

Furthermore, by construction, assertion 3 holds at least when d  2r. Now if d &#x3E; 2r, we
have

so P(vE(d-rd)) = vE(rd) and assertion 3 holds in that case as well.
There only remains to prove:

- assertion 2, which is known so far only when A = OX(03BBA). That is because our construction
is not ’intrinsic’ - it relies on the choice of a point A in X;

- assertion 3 when r = d: we must show that for any E E I(2rr) we have P(E) ~ E.
The first thing to do is to show that our construction is intrinsic. It is enough to prove the
second assertion of Theorem 2, whose first assertion is known already. All we have to show
is the following property (property (P)): let (â) E Je; let h = (r, d) and (Q03B4) = 1/h(d). Let v,
w E Pic, X and E = v E(l), F = wE(d). Then c, (E) = v, c, (F) = hw, and hom (E, F) =
hom (F, E) = 1 if v = w, 0 otherwise.

We prove (P) by induction on r. It is obvious for r = 0. Now to reduce to a smaller value
of r, we can assume that r  d  2r (by tensoring by some OX(03BBA)). Let E’ = vE(03B4-Q03B4) and
F’ = wE(d-rd) so that E = P(E’ ) and F = P(F’). Then we have c, (E) - c1(E’) = v,
c, (F) - c, (F’) = hw and hom (E, F) = hom (P(F), P(E)) = hom (F’, E’) = 1 if v = w,
0 otherwise, the same holding for hom (F, E). Hence the property.

Let E E I( 2, ). For r = 1 at least, P(E) ~ E. Now for a general r, there is a unique F E I(12)
such that hom (F, E) ~ 0. We have hom (F, P(E)) = hom (P(F), E) = hom (F, E) ~ 0, so
P(E) ~ E. We have proved Theorem 1.

For Theorem 2, there remains only to show the existence of universal sheaves E(â). As usual
we proceed by induction on r. For r = 0, let I be the ideal sheaf of the diagonal A c X x X.
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Then E(’) = OX x/Id works. For r &#x3E; 0, we can always assume r  d  2r. (by tensoring
with a suitable line bundle E Pic X). Now by induction there exists a universal sheaf E(d-rd)
over Pic,X x X. Consider the evaluation morphism

The restriction of EV to a fiber {v} x X is the ordinary evaluation morphism ev:

H0(vE(d-rd))X ~ vE( 1dr ), whose kernel is vE(rd)*, so E(rd) = (ker EV)* works.

Appendix B - proof of Theorem 3

Denote by CH(X) the Chern group of X, which we identify with 7L2 x X. The Chern character
of any F E Coh (X) is the element

With any left-exact functor F from Coh (X) to itself we can associate functorially a group
endomorphism CH(F) of CH(X), so that for any F ~ Coh (X) we have:

Now let P be a coherent sheaf over X x X, flat with respect to projections, and let

We consider the following properties:
- (P 1 ) CH(Sp): 7L2 x X - 7 2 x X is the left multiplication by M on the first factor;
- (P2) for any v E X, Pv, ~ vE(yt);
- (P3) for any v E X, P,v ~ vE(yx).
We have the following lemma.

LEMMA B 1. If P satisfies the property (P) of Theorem 3, then it satisfies also (P 1), (P2) and (P3).
As a consequence, it is uniquely determined up to isomorphism.

Proof. Assume that P satisfies (P). Then clearly P satisfies (P 1 ). It also satisfies (P2) because

Pv, = pr2*(P (D pr1*k(v)) = SP(vE(01)) = vE(yx). This means that P is a universal family of
stable sheaves of rank y and degree t over X.
For unicity, assume that P’ satisfies (P1) and (P2). Then there exists L E Pic (X) such that

P’ rr pr* L Q P, so that we have Sp. = Su (? Q L), hence CH(? Q L) = IdCH(X), so L ~ OX
and P’ ~ P.

Now to check that (P3) holds as well, assume first y = 0. Then P = pr1*OX(z 2022 A) (8) OA
clearly satisfies (P), (P 1 ), (P2) and (P3). Assume y &#x3E; 0. Then P is a rank y locally free sheaf.
Let v E X and let E be an indecomposable component of P,v . By the semi-continuity theorem,
there are canonical morphisms
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furthermore, k, is always an isomorphism, and k° is an isomorphism provided that R1SP(E*)
is locally free at v (see [H], p. 290).
Now, E being a component of P.,v, we have: h0(E* p P.,v) = hom (E, P@v) ~ 0, and

h’ (E * 0 PJ = hom (P,v , E) ~ 0. This implies that R1SP(E*) is non-zero. In view of (P),
R1SP(E*) is indecomposable and Sp(E*) is trivial; so ko is not an isomorphism, and R1Sp(E)
is not locally free at v. Therefore there exists h  1 such that R1SP(E*) = vE( h ). So we have:
E* = vEh(y-x) and because of the rank, we can conclude: h = 1 and E = P,v ~ vE(yx),
hence (P3).

Before proceeding to show the existence of the sheaves PM, we make a few remarks about the
’usual’ Fourier transform introduced by Mukai.

Consider the matrix J = (0 1-1 0). The usual Fourier transform is the functor RSPJ, where

Clearly PJ satisfies (P2) and (P3) for M = J. Now let Po = Oxxx(- A). One can check easily
that PJ ~ (- Id’(xx)* Po Q pr*Ox(A) (D pr*Ox(A). Therefore SPJ ~ (-Idx)*(Ox(A) 0
SP0 (? Q Ox(A)). Now we know everything about Spo’ which is none other than the ’kernel of
the evaluation morphism’ functor. To be precise, there is a short exact sequence:

for any F ~ Coh (X) we have Tor’ (O0394, pr*2F) = 0, so, tensoring by pr*2 F and applying pr1*,
we get a long exact sequence:

so SPO (F) - ker ev. We can deduce immediately that P, satisfies (P1).
We have the following proposition.

PROPOSITION B 1. For any M ~ SL2(Z)+ there exists a sheaf PM satisfying (P1), (P2) and (P3).

Proof of the proposition. We saw this already when y = 0 and when M = J. So assume y  1.

There exists a locally free sheaf P over X x X satisfying (P3) (cf. Theorem 2). Let Y: X - X
be the morphism ’multiplication by y’, and consider the diagram

For any v E X we have ((IdX x Y)*P),v ~ yvE(yx) ~ OX(v - A) 0 AE(yx), so there exists
L e Pic (X) such that
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therefore Y* 03BF RlSP ~ RlSPJ (? ~ AE(yx)) ~ L, hence a relation between endomorphisms of
CH(X); denote by M’ the matrix of the action of CH(Sp) on 7L2, and let À = deg L. By
functoriality, we get

so M’ = ((ix-yx)/y2 y ), and À = ty( y2). Let q = (À - ty)/y2; replacing P by P 0 pr*(Ox(qA»
we can assume M’ - M.

Now let v E X. By (1) we have Y* Pv, ~ L ~ Ox(v - A) (D k5, so Y* Pv, is semi-stable

of rank y and degree y ; therefore Pv,. is semi-stable of rank y and degree À/y = t, hence stable.
Because of (P3), the determinant bundle of P is a Poincaré bundle; tensoring P by a suitable
line bundle, we can assume:

so (P2) holds. Now tensoring again by a suitable A E Pico (X) such that A ~y ~ Ox, we obtain
a sheaf PM which satisfies (P 1 ) as well.

For any M E SL2 (Z)+, let PM be the sheaf satisfying the conditions of the proposition, and for
simplicity let FlM = R‘SpM and FM = RSpM . We know already that (P) holds for y = 0. So
assume y &#x3E; 0. We have the following lemma.

LEMMA B2. Let M’ = - M-’. Then

Proof. Denote by P12, P23 and P13 the projection X3 ~ X2. For any two coherent sheaves P, Q
over X x X, flat with respect to projections, there is a canonical isomorphism:

where H is the complex R p13* (p12*P Q p23*Q) and RSH. is the functor Rpr2*(H8 ~pr1*(?)).
There is also a canonical isomorphism 

(The proof is an elementary application of base-change and the adjunction formula.) In order
to apply this to P = PM and Q = PM, we consider the sheaf R = p12* PM ~ p23* PM’ . For any
v, w ~ X we have: Rv,.,w ~ v E(a ) ~ wE(y-t) so h0(Rv, ,w) = hom (-wE(yt), vE(yt)) = 1 if
v = - w, 0 otherwise, and the same holds for h1(Rv, ,w). By the semi-continuity theorem, we
conclude that H° = p13*R = 0, and H’ = R1p13*R is supported by the second diagonal
0394’ ~ X x X. So we have FM’0 03BF F0M = 0 and Fm, FM = [ - 1] 0 SHI. Now (P1) holds for PM and
PM,, so we have CH(SH1) = (- IdX)*. Therefore for any v E X we have Hv1 ~ k(- v), and
pr2* H1 ~ Ox; we obtain: H1 ~ Os, and since So0394’ = (- Idx)*, we are done.
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Now we proceed to prove that PM satisfies (P). Let E = vE(d) be an indecomposable sheaf,
and assume first : M(d) e H. One can check easily that this condition implies xr + yd &#x3E; 0.

Let w ~ X. We have: dim (F1M(E ) ~ k(v)) = h1(E ~w E(yx)) (by the semi-continuity
theorem) = hom (E, wE(x)*) (by Riemann-Roch) = 0 because 03BC(wE(yx)*) - J1(E) =
(-1/yr)(xr + yd)  0; so F1M(E) = 0. Now let E’ = F0M(E). We have F0M’ 03BF F0M(E) = 0, and
since FM’ 03BF FM = (-IdX)* 03BF[-1], we deduce that F1M’(E’)=F1M(E)~(-IdX)*E.
Hence, F1M’(E’) and E’ are indecomposable. By (P1) we have ch(E’) = Mch(E), so E’ ~
WEM(â) with (r, d) . (v - w) = 0. So we are done at least when (r, d ) = 1. Let h = (r, d)
and Eo = vE1/h(rd). We have Eo m E, so FM(Eo) = vEM 1/h(d)  E’= wEM(d); this
implies w = v.

If M(rd) ~ JE then M’-’(â) - -M(d) e H; so E ~ F0M; E", where E" - vE - M(d). We
have F0M(E) = (-IdX)*E" ~ -vE - M(d), and (P) is satisfied.

Now we prove the second assertion of Theorem 3. Clearly, we can reduce to the case when
M, M’ e SL2(Z)+. The result is known already if M’ - - M-’ and it is trivial if M or
M’ = (1z 01) for some z e Z. So we can assume that MM’(?) e 7L* x Z. Assume for instance
that MM’(?) eN* x Z, so that MM’ e SL2 (7L)+ (the proof is similar in the other case). We
have FM 03BF FM’ = RSH . , where H - R p13* (p12* PM’ (8) Pi3PM,). Let R = p12* PM’ (8) pi3PM, and
let v, w e X. Then Rv, ,w ~ vE(y’t’) 0 wE(yx). Since xy’ + yt’ &#x3E; 0, we conclude that H’ - 0,
and by base-change, H0v, ~ F0M(vE(x’x’)) ~ vE(xy’+yt’zy’+tt’) and similarly, H0,v ~ vE(xy’+yt’xx’+yz’).
So H0 is locally free, and satisfies (P1), (P2) and (P3) for the matrix MM’. This implies

n0 ~ PMM’ , hence the theorem.
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