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Abstract. Let w be the space of all Z2 -extensions over a fixed automorphism with a rational
pure point spectrum, endowed with the uniform topology. We prove that a set of "typical"
points of *’ coincides with the class of those Z2-extensions which are measure-theoretically
isomorphic to Morse sequences. The factor problem is studied.
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Introduction

Skew products were introduced to ergodic theory by Anzai [2] in connection
with the problem of isomorphism. It was shown in [1] that any ergodic
automorphism can be represented as a skew product of one of its factor-
automorphisms with a family of automorphisms.
However, up to now, a great deal of the attention has been devoted to the

study of some simpler forms of skew products, namely to the so called
G-extensions over automorphisms with pure point spectra (for instance [2],
[10], [11], [19], [21]).

In the present paper we deal with Z2-extensions over automorphisms with
rational pure point spectra. Recall some well-known examples of them:
generalized Morse sequences [12], continuous substitutions on two symbols
[4], Mathew-Nadkarni’s examples [18] with partly continuous Lebesgue
spectrum of multiplicity two, Helson-Parry’s constructions [8].
Morse sequences are very useful for constructing counterexamples in

ergodic theory (for further details see [16]). We hope that our present paper
emphasizes once more the peculiar role of the class of Morse dynamic
systems in ergodic theory. Our main result here seems to confirm that the
combinatorial approach to ergodic theory (in Jacob’s sense [9]) is of a rather
general nature. In 1981 J. Kwiatkowski posed the question whether any
"typical" Z2-extension over a rational pure point spectrum is a Morse

sequence. The first part of the paper positively answers this question. We
prove that in the space of Z2-extensions of a fixed ergodic automorphism
with rational pure point spectrum, the set of extensions isomorphic to
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Morse sequences is of the second category (in the weak topology). To prove
this we use Katok-Stepin’s theory of odd approximation of Z2 -extensions
[11]. But what seems most important is that by analyzing the proof one can
observe that in fact we show more: if an ergodic Z2 -extension over T is oddly
approximated with speed o(1/n2) then it is measure-theoretically isomorphic
to a Morse sequence. So in this case, Katok-Stepin’s theory has quite a
combinatorial nature.

In the second part of the paper we treat the factor problem. It is not hard
to see that the class of ergodic Z2 -extensions of automorphisms with pure
point spectra is closed under taking factors. It turns out that if Sp(T()) is the
group of all pk-roots of unity, k  1, and p is a prime number, then the only
factors of To are those with discrete spectrum. The main result of the sections
states that if x = b0  b1  ... is a regular Morse sequence and the set of
blocks {b0, b1, ...} is finite then the only proper factors of x are those with
discrete spectrum. In particular all continuous substitutions on two symbols
enjoy this property.

I. Définitions and remarks

Let (X, -4, Ji) be a Lebesgue space and T: (X, -4, p)) be an automorphism.
By Sp (T) we denote the group of all eigenvalues of T, i.e. 03BB E Sp (T ) iff
f T = 03BBf for some 0 ~ f E L2 (X, 03BC). We recall here the result of [3] stating
that exp (203C0i/m) E Sp (T) iff there is a T-stack of height m which is a par-
tition of X, i.e. there is a partition of X of the form {A, TA, ..., Tm-1A},
for some A E é3. Obviously the ergodicity of T implies that there is only one
T-stack of height m filling up X (recordering its elements if necessary). We
will denote it by Dm = (Dô , ... , Dmm-1). Moreover, if k 1 m then Dk  Dm,
i.e. Dm is finer than Dk .

Let {nt : t  0} be a sequence of natural numbers such that nt|nt+1 , t  0
and 03BBt+1 = nt+llnt, t = 0, 1, ... , Ào = no a 2. Denote by G{nt: t  01
the group of all roots of unity generated by {exp (203C0i/nt): t  01 (every
infinite group of roots of unity can be obtained in this way).

DEFINITION 1. An ergodic automorphism T with discrete spectrum has
rational pure point spectrum if Sp (T) = G {nt : t  01.

These automorphisms were characterized in [17] as follows

LEMMA 1. T has rational pure point spectrum with Sp (T) = G {nt : t  01 iff
there is a sequence of partitions {Dnt of X, where Dn’ are T-stacks of heights
nt resp. and Dnt ? E.
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By Z2 = {0, 1} we mean the group of all integers mod 2 equipped with
Haar measure m(0) = m(1) = 1/2.

Let 0: X - Z2 be any measurable map.
Let 03BC be the product measure 03BC  m on Y = X  Z2.

DEFINITION 2. By Z2-extension of T with respect to 0 we mean the auto-
morphism To : YD defined by the formula

Following [11], [19], To is ergodic iff there is no measurable function

f: X - K (K denotes the unit circle) such that

Let : y), a(x, i ) = (x, i + 1) for each (x, i ) E Y. Then u is a 03BC-preserving
automorphism and 03C3T03B8 = T03B803C3.

It is not hard to see that

where -9 = {f~L2(Y,03BC):f03C3 =f} = L2(X, 03BC), L = D~ = {f ~ L2(Y,03BC):
f03C3 = -f}.

From now on Twill be an ergodic automorphism with rational pure point
spectrum, Sp (T) = G{nt : t  01, and To be a Z2 -extension of T.

REMARK 1. If To is ergodic and has any point spectrum on W, then To has
discrete spectrum.

Proof. Let H z L2(Y, fi) be the space generated by all eigenfunctions of To.
Then

H is a unitary subring [23]. (4)

Consider the partition of Y, where
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Then 1 is To -invariant and measurable and the corresponding factor-
automorphism To /1 is isomorphic to T. Moreover, the unitary subring
corresponding to 1 is contained in H, so that 03BE is the partition corresponding
to H [23], then

T0/03BE has discrete spectrum [23]. (7)

But the ergodicity of To implies that the number of elements in any atom of
03BE is constant and common for a.e. atom of 03BE. Therefore from (3), (5) and (6)
it follows that ç = e. Thus by (7) To has discrete spectrum.
Note that Remark 1 may be reformulated as follows: if To is ergodic, then

To has partly continuous spectrum iff’ Sp (To) = Sp (T). (8)

If this is the case, we call To a continuous Z2 -extension.
Let us consider a class of well-known examples of ergodic Z2 -extensions

usually called generalized Morse sequences [12]. We briefly recall their

definition referring for further properties to [12], [14], [16].
Let B = (bo,..., bn-1), C = (co,..., Cm-1) be blocks (finite sequences

of 0 and 1) with lengths IBI = n and |C| - m. By B x C we mean the
juxtaposition of blocks B x C = B" ... Bcm-1, where B0 = B, B1 = B =
(bo + 1, ... , bn-1 + 1). By fr (B, C ) we denote the cardinality of the set
{i: 0  1 x ICI - IBI, B = C[i, i + IBI - 1]}, where C[r, s] = (cr,
Cr+1, &#x3E; ..., c,). If 1 BC | = n, then d(B, C) = card {i : 0  i  n - 1,
B[i] =1 C[i]/n.
Now, let bo, b’ , b2 , ... be blocks starting with zero, |bi| = 03BBi  2 and let

x = b° x b’ x b2 x ....

DEFINITION 3. x is said to be a Morse sequence if

i) infinitely many of the b"s are different from 0 ... 0,
ii) infinitely many of the bi’s are different from 01 ... 010,
iii) 03A3i0 ri = 00, ri = min (1/03BBi fr (0, b’), 1/03BBi fr (1, bi)), i  0.

We extend x to two-sided sequence W E {0, 1}Z [12] preserving the almost
periodicity condition. Let Ox = {03C4i03C9:i E Zlc’, where the closure is taken in
{0, 1}Z and r is the shift transformation. It is known [12] that «9x, i) is

strictly ergodic. The unique (ergodic) T-invariant measure we denote by 03BCx .
Let P = (P° , Pl) be the zero-time partition, Pi = {y E (9x: y[0] = il . Then
P is a generator of i on (9x. Let J be the mirror map on (9x, i.e. J( y) = ,
y[i] ] = y[i] . Then J is an automorphism of «9x, Mx) ar = 03C403C3. Let
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ct = b° x... x bt , nt = |ct| = Ào x ’ ’ ’ x 03BBt, t  0 and let (T, X, p)
be an ergodic automorphism with discrete spectrum and Sp (T) =
G {nt : t  0}.

REMARK 2 [14]. For every Morse sequence x = b° x ... there is a measur-
able 0: X - Z2 such that x is isomorphic to To (more precisely, the i
associated with x is isomorphic to T03B8). If no confusion can arise we will
speak about properties of x instead of properties of «9x, T, /lx).
A Morse sequence x = bO x b’ x ... is called continuous if Sp (x) =

REMARK 3 [12]. x is continuous iff either
a) infinitely many of the îi’s are even, or
b) 03A3t0 03C9(bt) = oo.

Notice that a) can be strengthened as follows: if infinitely many of the 03BBi’s
are even, then every ergodic Z2 -extension is continuous (see [12] p. 348).

Let us observe that any constant Morse sequence x = b x b x ... is

continuous. The class of all continuous substitutions on two symbols [4]
coincides with the class of all constant Morse sequences. A larger subclass
of continuous Morse sequences is the class of regular Morse sequences [ 14],
where x = b° x bl x ... is regular provided that there is o &#x3E; 0 such that

2 - o &#x3E; max (/lXt (00), 03BCxt(01)) &#x3E; Q; t  0, (9)

where xt - bt x bt+1 1 x ....

II. Theorem on category

In the class 11/’ of all Z2 -extensions of T we introduce some topology.
Namely

Simultaneously, we have the uniform topology

It is clear that these topologies coincide. The class w is completely metriz-
able in the uniform topology because Q is a complete metric. In other words
w is a closed subspace of the class of all automorphisms of ( Y, 03BC) endowed
with the uniform topology, so it has Baire property.
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Our goal is to prove the following:

THEOREM 1. The class of all Z2-extensions which are isomorphic to Morse
sequences is of the second category in ifÎ.

Notice that from Theorem 1 it follows that the class of all ergodic Z2-
extensions is residual in 11/ (cf. [20]).
The proof of Theorem 1 goes by steps.

Step 1. The concept of odd approximation [11].
We say F z X is oddly approximated with respect to Dnt ? e with a speed

o(g(n)) if for some subsequence {ntk} there exist sets Fk consisting of an odd
number of atoms of D k such that 

(we recall here that ntk is the number of atoms of the T-stack Dn/k of height
ntk ).

It is known [11] that the collection of all measurable functions 0 : X ~ Z2
such that 03B8-1(1) is oddly approximated with a fixed speed contains a dense
Gô-set. Therefore the set of all ergodic Z2 -extensions is residual since if0 is
oddly approximated with speed o(1/n), then it has simple spectrum [11].

REMARK. The proof of density of ergodic G-extensions can also be found in
[10] for a more general situation.
We would like to briefly explain the notion of odd approximation with

’sufficiently high speed’ in our situation.

Fig. 1 Fig. 2

If the speed of approximation is sufficiently high then on each level D7t of D"
the function 0 is constant apart from a set of a small measure (Fig. 1). Thus
for To, two To -stacks arise (one of them is denoted by fat dashes on Fig. 2).
If we want to assure that To admits a cyclic approximation, we must show
that the top of the first To -stack is carried by To on the base of the second
one. To show this we must show that there is an odd number of l’s on Fig. 1.
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Step 2. Let 0: X ~ Z2 be measurable and oddly approximated (i.e. 0-’(1) is
oddly approximated) with speed o(1/n2). Then there is a sequence of two To-
stacks Cnt(0) and Cnt(1), Cnt(j) = (CJ’: 1 = 0, 1, ..., nt - 1}, j = 0, 1

such that 

Cnt - £ (not necessarily monotonically). (14)

Indeed, let Ei be the subset of Dnti consisting of all x E Dnti such that
03BC(Enti) &#x3E; 1/2 and 03B8|Enti is constant. Consider the set

Thus Et ~ Dnt0 and

From our assumption -

In particular (16) implies

From (15) and (17) it follows that

So, the sets (Dnt0BEt) x {i}, i = 0, 1 can be taken as the bases of two

To-stacks of heights nt . Putting Cnt0(i) = (Dnt0BEt) x {i} ~ Et x {i}, i =
0, 1, we obtain two To-stacks with the property (13). It is clear that (18)
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implies the property (14) because the partitions

generate all measurable sets in Y.

REMARK. For simplicity we have assumed in the proof above that the
subsequence {ntk} from (12) is equal to the sequence {nt}.
By C’-’ we will mean two stacks of height 1,

Step 3. For 0 as in Step 2 there is a sequence of two T03B8-stacks Cnti(j),
i = 0, ... , nt - 1, t = - 1, 0, 1, ... such that

The proof of Step 3 is in some sense a modification of Goodson’s consider-
ations from [6] (Theorem 3). Indeed, (20) follows directly from that theorem.
Now, fix t  0 and consider all 2-To-stacks C Int (i.e. C Int is a disjoint union
of C’nt(0) and C’nt(1) where Clnt(i) = {C’nt0(i), ... , C’ntnt- 1(i)}, i = 0, 1 are

To-stacks) satisfying C’nt  Cnt+l. Then it is not hard to see that if C,,n,
realizes the minimum of the set

then 03C3C’nti(0) = C’nti(1) and therefore (19) holds.

REMARK 4. Our considerations are restricted by the conditions:

This last condition may be obtained by passing to a subsequence if necessary.
Observe also that the condition Cnti(0) ~ Cnti(1) = D;t allows us to assume
Cnt+10(i) ~ Cnt0(i), t  0, i = 0, 1.
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Step 4. Let 0 be as in Step 2. Denote Qi = Cn-1(i), i = 0, 1. Then there is

a sequence x = b° x b’ x ... such that Q-s-names of a.e. z E Y are sectors
of x.

From the preceding step we have

We define a sequence of blocks b°, b’ , b2, ... satisfying bi[0] = 0,
1 b’l = Ài = ni+l/ni, as follows

DEFINITION OF b° . We divide Qi into 03BB0 pieces Cn0j(k) of measure 1 /2n° using
the condition Q  Cno (Fig. 3).

Fig. 3

We look at the trajectory of Cn00(0) and put b0[i] ] = b0[i + 1] iff T03B8(Cn00(0))
and Cino (0) are contained in the same atom Qs, s = 0, 1.

Let us suppose b°, ..., b‘ are already defined.

DEFINITION OF bt+1

bt+1 = 0011
Fig. 4

We divide Cnt0(i) into 03BBt+1 pieces Cnt+1jnt(kj),j = 0, 1, ... , 03BBt+1 - 1 and we
look at the trajectory of Cnt+10(0) (Fig. 4). We put bt+1[i] = bt+1[i + 1] iff
Tnt03B8(Cnt+1int(0)) and Cnt+1int(0) are contained in the same atom C;t(s), s = 0, 1.
From the définition of x = b° x bl x ... it follows that

- Q-n°-name of y from Cn00(O) is equal to b°,
- Q-n1-name of y from Con’(0) is equal to b° x bl - ci ,

- Q-nt-name of y from Cnt0(0) is equal to hO x bl x ... x bt = ct, t  0.

Moreover, since uQo = QI, Q-n-name of uy = (Q-n-name of y)-, n  0.
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This implies that Q-n-names of a.e. y E Y are sectors of x = b° x
bl x ... , unless bt = 0 ... 0, t  to. But this situation is excluded
since To is ergodic (if b’ = 0 ... 0, t  to, then Cnt00(0) ~ ... u Cnt0nt0-1 (0)
is To -invariant).

Step 5. Either bt = 01 ... 010, t  to or x = hO x bl x ... is a Morse

sequence (continuous or not).
Indeed, suppose infinitely many of the b"s are different from 01 ... 010

(and 0 ... 0 by Step 4). All we have to show is that

03A3rt = oo (see Definition 3).

Let us observe that for the sequence {Cnt} we have defined in Step 3,

holds (see the proof of Theorem 3 in [6]). Hence

since ënt and Cnt are 2-To-stacks. Moreover, {Cnt} has the property

Since

and

we have
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Now, we show that

Indeed, if bt+1[i] = bt+1[i + 1], then Tnt03B8(Cnt+1int(j)) ~ Cnt0(j), j = 0, 1.

With any such a pair (i, i + 1) we can assign the level Cnt+1int(0) with
the measure equal to 1/2nt and Cnt+1int(0)~Tnt03B8(Cnt0(0))0394Cnt0(1). So,
1/2nt+1(fr (00, bt+1) + fr (11, bt+1))  03BC(Tnt03B8(Cnt0(0)) A Cnt0(1)).
From (25) and (26) it follows that

and therefore x is a Morse sequence.

Step 6. Q is a generator for Te as soon as x is a Morse sequence.
We will show that for a.e. y, y’ E Y there is an n E N such that Q-n-names

of y and y’ are different. Indeed, suppose that y, y’ have the property from
Step 4, i.e. their Q-n-names are sectors of x. Moreover

Now, let us take (9,,. Then we have also a sequence of two r-stacks Ent(j),

and the corresponding partitions Ent ? e [14]. Let z = ~t0 Entit(jt) and
z’ = ~t0 Enti’t(j’t). Since y ~ y’, there is t such that (it , jt) ~ (i’t, j’t) and
therefore z ~ z’. Moreover, any Q-n-name of y (y’) is equal to P-n-name of
z (z’). But P is a generator of 1:, so P-n-names of z and z’ are different for
some n and therefore for that n, the Q-n-names of y and y’ are different.

Step 7. If x = b° x bl x ... determined by the 0is a Morse sequence then
TB and x are isomorphic as dynamical systems.
By Step 4 and 6 we can find a point y E Y which is generic for TB and

Q-s-name of y is always a sector of x, s  0. Next, we select z c- (9x such that
1:-P-s-name of z is equal to Q-s-name of y, s  0. Hence, there are two
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generic points y for To and z for x such that Q- oo -name of y = P- oo -name
of z. Since Q and P are generators, To and x must be isomorphic.

Step 8, proof of Theorem 1. As we have seen in Step 5 it is possible
x = bO x bl x ..., b’ = 01 ... 010 t  tl . If this is the case we see that

Tnt0(Cnt0(0)) = Cnt0(1) and therefore we can define a To -stack of height 2nt , so
exp (203C0i/2nt) E Sp (T03B8), t  tl. Thus, from Remark 1, To has pure point
spectrum and Sp (T0) = G{n’t: t  01 where nr - n, for t  to, n; = 2n,
for t  to, where to is the smallest natural number such that 03BBt0 is odd.
It is a consequence of the fact that if exp (2nil2n,) e Sp (To) then

exp (203C0i/2nt-1) - exp (203C0i03BBt /2nt) e Sp (To ).
Let y = po x pl x ... be a Morse sequence |03B2i| ( = |bi|, i  0 and

03A3i0 03C9(03B2i)  oo (see Remark 3). Then y has a discrete spectrum and
Sp (y) = Sp (To). Therefore we can "replace" x by some Morse sequence.
Now, our proof is complete by Step 1, Step 5 and Step 7.

III. On the factor problem for Z2 -extensions

A motivation to study the factors problem lies in the following:

PROPOSITION 1. Let To be a continuous, ergodic Z2 -extension and let U:

(Y’, 03BC’) be a factor of it with partly continuous spectrum. Then there are
T’: (X’, 03BC’) with discrete spectrum and e’: X’ ~ Z2 measurable, such that U
is isomorphic to To,.

Proof. We will use Pickel’s and Kushnirenko’s theorems [13, 22] concern-
ing sequence entropy. If To is a continuous, ergodic Z2 -extension, then
supA~N hA(T03B8) = log 2[22]. Furthermore, supA~N hA(U)  SUPA~N hA(To).
But if U does not have discrete spectrum then supA~N hA(U) &#x3E; 0 [13] . So
using Pitskel’s result once more we obtain supA~N hA (U) = log 2. We recall
that 2 is then the number of elements in ~-1(x’) (a.e. x’) where 9:

( Y, To, 03BC) ~ (X’, T’, y’) establishes a homomorphism between To and its
maximal factor with discrete spectrum.

Now, let To be a continuous Z2 -extension and q be the partition described
by (5). Then q is To -invariant and measurable and To/11 is isomorphic to T.
This factor (and all the factors which are determined by subgroups of
Sp (T)) has discrete spectrum.

In the sequel we consider proper factors of a given Z2 -extension.
It was observed in [16] that some Morse sequences have the only factors

with discrete spectra. This can be generalized as follows.
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PROPOSITION 2. Let p be a fixed prime number and let Sp (T) = G{nt : t  01
have the property 03BBt = pkt, kt  1, t  0. Then every ergodic continuous
Z2-extension has no factors with partly continuous spectrum.

Proof. First, let us observe that if U is a factor with partly continuous
spectrum (via cp) of To, then Sp (U) is an infinite subgroup of Sp (T).
Indeed, otherwise U would be a Z2-extension of some ergodic transformation
defined on a finite space. But there is no ergodic transformation with partly
continuous spectrum on a finite space. So, we may assume Sp (U) = Sp (T)
since no other infinite subgroup of Sp (T) exists.
Now let {Dnt} be a sequence of U-stacks of heights nt corresponding to

Sp ( U). Then ~-1(Dnt) is again a Ta-stack of height nt , so it is equal to Dnt,
t  0. Therefore a-algebra generated by {~-1(Dnt)}t0 contains a 6-algebra
of ~-measurable sets, because the latter a-algebra is generated by {Dnt}t0.
As a conclusion we have ~ 03BE, where 03BE is Te -invariant measurable partition
corresponding to the factor U. Hence, either 03BE = q, a contradiction to

continuity of U, or 03BE = e, and U is then isomorphic to To.

The above investigations might suggest that the case Ât = pkt , t  0 is the
only case where all factors of To have discrete spectra. However, this is not
true as the following theorem shows.

THEOREM 2. If x = b° x bl x ... is a regular Morse sequence and Ài  r,

i  0, then allfactors of x have discrete spectrum.

Before the proof we establish some auxiliary facts.
Let x = b° x b’ x ... be a continuous Morse sequence. By ~x we mean

the measurable partition (r-invariant) corresponding to the maximal factor
with discrete spectrum. Hence

A ~ ~x iff A = {Z, Z}, Z E (9x. (27)

Then by Proposition 1, any proper factor of x with partly continuous
spectrum is also a Z2 -extension. Thus it is of the form T03B8 : (X x Z2, 03BC),
where T: (X, 03BC) has discrete spectrum with an infinite group of eigenvalues
and Sp (T)  G {nt : t  0}. Consider now the factor of To generated by the
partition Q = (X x {0}, X  {1}) (i.e. the a-algebra corresponding to
V +~-~ (T03B8-iQ). We assert that this factor has partly continuous spectrum.
Indeed, otherwise V +~-~ T03B8-iQ  ~ (see (5)) since any factor with discrete
spectrum is canonical [19] and il determines the maximal factor of To with
discrete spectrum. But, then X  {0}, X  {1} would be ~-measurable, i.e.



76

Q(X x {i}) = X x {i}, a contradiction. The factor generated by Q is

isomorphic to a shift dynamical system (W, i, v), where

Moreover if 03BE is the partition of W given by

then 03BE is measurable, T-invariant and the corresponding factor-automorphism
03C4/03BE has discrete spectrum. Furthermore, since To is a proper factor of x, so
is(W,03C4,v).
Now, suppose that 03C8: (Ox, 03C4, tix) ~ (W, T, v) establishes a homomorphism.

Then

since tf¡-I ç induces a factor of x with discrete spectrum and this factor is
canonical.
The condition that (W, i, v) has partly continuous spectrum implies

cannot identify any pair (z, z) E (9x, because the set {z e (9x: 03C8z = 03C8z} is

i-invariant. So

This implies

Indeed, from (29) and (30) it follows that for a.e. pair {z, z) ~ Ox there is
a pair {y, J) z W such that {z, z} ~ 03C8-1{ y, y}. Now, (32) follows directly
from (31).

Let us fix ô &#x3E; 0. Then from the Birkhoff theorem there exists a code çô :
Ox ~ {0, Il’ (i.e. çô is measurable çôi = 03C4~03B4, z [ - k, k] = z’[ - k, k] implies
(~03B4z)[0] = (~03B4z’)[0] a.e. z, z’ E Ox, k is the length of the code) such that

where d(z, z’) = lim,, d(z[ - m, m], z’[ - m, m]) if the limit exists.
In view of (32) and (33) we have

lim inf d((~03B4z)[ - m, m], (qJc)Z) [ - m, m]) &#x3E; 1 - 203B4. (34)
m
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The second kind of argument we use in the proof of Theorem 2 is connected
with a property of (9, which holds for any regular Morse sequence of the
form: x = b° x b 1 x ... , 03BBi  r, 1 a 0. Namely

There is 5 &#x3E; 0 such that for every y, y’ E (9, (35)
y ~ y’ implies lim inf d (y[-m,m],y’[-m,m])  03B4

m

This fact is an obvious consequence of Proposition 1 in [15].

Proof of Theorem 2. Let b &#x3E; 0 be fixed. Denote the code of c, and è, (via qJb)
by dt and dt , nt &#x3E; 2k - 1. Of course we cannot assume à, - dt.
From (34) it follows that

for t large enough. (36)

Since ( W, T, v) is a proper factor, 03C8 is not one-to-one. Let

Hence from (33)

lim sup d((~03B4z)[-m, m], (~03B4z’)[-m, m])  d(~03B4z, 03C8z) + d(~03B4z’, 03C8z’)  2b.
m

(38)

Notice that we may assume 03C8z ~ 03C803C4sz a.e. z E Ox,, s E Z, because otherwise
a.e. point of W would be periodic, and this is a contradiction since (W, i, v)
has partly continuous spectrum.

Consequently we have

Now, fix t satisfying (36) and

We divide gôz and çôz’ into a juxtaposition of dt , dt and some "holes" of
length 2k (see Fig. 5).
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Fig. 5

We obtain a partition of dt (dt) on ~03B4z into three blocks A, B, C (Â, Ê, C)
and also d, (dt) on ~03B4z’ into three blocks A’, B’, C’ (Â’, ÎJI, Û") where |B| =
IB’I = 2k, |A| = JÂJ = |C’| = |C’|, ICI = lêl = |A’| = |Â’|. Then, from
(40) either |A|  nt/4 or |C|  n,14. We will consider the case |A|  n,14.
Thus, from (36) it follows that

Fig. 6

We have either

since d(A, C’) + d(Â, C’)  d(A, Â) and (41) hold.
Combining (42) with (38) we see that if for instance situation 1 (Fig. 6)

appears on ~03B4z and ~03B4z’ then situation II is nearly "excluded". Since the
frequency ct and è, on z (z’) are within ô provided that we consider the places
of the form it + snt (i; + snt), s E Z, we get the following:
if the situation 1 appears (and situation II is nearly "excluded") then situation
III appears (and situation IV is nearly "excluded").

Let us turn back to z and z’ and take into consideration t-(it-i’t) z and z’.
If situations 1 and III appear, then it follows that below the ct’s (è/s) of
!-(it -in z there are c/s (è/s) of z’ nearly always
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If situations II and IV appear then it means that below the c/s (è/s) of
03C4-(it-i’t)z there are è/s (c/s) of z’ nearly "always", i.e. in the first case

lim inf d(03C4-(it-i’t)z[-m, m], z’[-m, m])  100ô
m

and in the second

lim inf d(03C4-(it-i’t)z[-m, m], 2"[-M, m])  10003B4.
m

Therefore (31), (35) and (39) give a contradiction for a suitable choice of
b &#x3E; o..

COROLLARY 1. For any continuous substitution on two symbols the only
factors are those with discrete spectrum.

We finish our considerations by giving a clâss of ergodic Z2 -extensions
having some partly continuous factors.
Assume G{nt : t  01 has the property that the ît’s are odd, t  0 and in

addition 03B8-1(1) is oddly approximated with speed o( 1 /n) in such a way that
To has partly continuous spectrum.

REMARK. Such a To exists. For instance, if we put

then x = bO x bl x ... is a continuous Morse sequence and admits an
odd approximation with a speed depending upon how fast the sequence {03BBi}
tends to infinity.

Let T’: (X’, 03BC’) be an ergodic dynamical system with discrete spectrum
and Sp (T’) = G{n’t: t  01, n, = 3nt, t  0. There is 9: X’ - X,
T~ = çT’, p = M’(p-1. Now define 0’: X’ ~ Z2 putting
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We assert 03B8’-1(1) is oddly approximated with the speed o(1/n). Indeed

But ~-1 Dnt is a T’-stack of height nt and ~-1Dnt  D,n; because nt|n’t and
moreover any level ~-1Dntjr is a union of three levels of D,n;, so

We get 03B8’-1(1) is oddly approximated with the required speed. In particular,
T’03B8’ is ergodic and has partly continuous spectrum. Using (43) it is not

difhcult to verify that 9 x id : X’ x Z2 ~ X x Z2 establishes a homo-
morphism from T’03B8 to To.

Finally, note that if we assume 03B8-1(1) is oddly approximated with speed
o(1/n2), then we can obtain a homomorphism between some continuous
Morse sequences.

REMARK. It would be interesting to characterize all Z2 -extensions having a
factor with partly continuous spectrum.
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