On the Siegel modular function field of degree three
Compositio Mathematica, Tome 63 (1987) no. 1, pp. 83-98.
@article{CM_1987__63_1_83_0,
     author = {Tsuyumine, S.},
     title = {On the {Siegel} modular function field of degree three},
     journal = {Compositio Mathematica},
     pages = {83--98},
     publisher = {Martinus Nijhoff Publishers},
     volume = {63},
     number = {1},
     year = {1987},
     mrnumber = {906380},
     zbl = {0632.10027},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1987__63_1_83_0/}
}
TY  - JOUR
AU  - Tsuyumine, S.
TI  - On the Siegel modular function field of degree three
JO  - Compositio Mathematica
PY  - 1987
SP  - 83
EP  - 98
VL  - 63
IS  - 1
PB  - Martinus Nijhoff Publishers
UR  - http://archive.numdam.org/item/CM_1987__63_1_83_0/
LA  - en
ID  - CM_1987__63_1_83_0
ER  - 
%0 Journal Article
%A Tsuyumine, S.
%T On the Siegel modular function field of degree three
%J Compositio Mathematica
%D 1987
%P 83-98
%V 63
%N 1
%I Martinus Nijhoff Publishers
%U http://archive.numdam.org/item/CM_1987__63_1_83_0/
%G en
%F CM_1987__63_1_83_0
Tsuyumine, S. On the Siegel modular function field of degree three. Compositio Mathematica, Tome 63 (1987) no. 1, pp. 83-98. http://archive.numdam.org/item/CM_1987__63_1_83_0/

1 F.A. Bogomolov and P.I. Katsylo: Rationality of some quotoent varieties. Math. USSR Sbornik 54 (1986) 571-576. | Zbl

2 G. Frobenius: Über die Beziehungen zwischen den 28 Doppel-tangenten einer ebenen Curve vierter Ordnung. J. Reine Angew. Math. 99 (1886) 275-314. | JFM

3 J. Igusa: On Siegel modular forms of genus two. Amer. J. Math. 84 (1962) 175-200. | MR | Zbl

4 J. Igusa: On Siegel modular forms of genus two (II). Amer. J. Math. 86 (1964) 392-412. | MR | Zbl

5 J. Igusa: Modular forms and projective invariants. Amer. J. Math. 89 (1967) 817-855. | MR | Zbl

6 J. Kollár and F.O. Schreyer: The moduli of curves is stably rational for g ≦ 6. Duke Math. J. 51 (1984) 239-242. | Zbl

7 H. Maass: Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades. Mat. Fys. Medd. Vid. Selsk. 38, 14 (1964). | MR | Zbl

8 M. Ozeki and T. Washio: Explicit formulas for the Fourier coefficients (of Eistenstein series of degree 3). J. Reine. Angew. Math. 345 (1983) 148-171. | MR | Zbl

9 M. Ozeki and T. Washio: A table of the Fourier coefficients of Eistenstein series of degree 3. Proc. Japan Acad. Ser. A 59 (1983) 252-255. | MR | Zbl

10 S. Raghavan: On Eisenstein series of degree 3. J. Indian Math. Soc. (N.S.) 39 (1975) 103-120. | MR | Zbl

11 B. Riemann: Zur Theorie der Abel'schen Funktionen für den Fall p = 3. In: Math. Werke. Teubener, Leipzig (1876) 456-476.

12 R. Sasaki: On the equations defining curves of genus three and the moduli (Japanese). In: Around theta functions and Siegel modular forms. RIMS Kokyuroku 447 (1982) 17-31.

13 G. Shimura: On the zeta function of an abelian variety with complex multiplication. Ann. Math. (2) 94 (1971) 504-533. | MR | Zbl

14 G. Shimura: On the field of rationality for an abelian variety. Nagoya Math. J. 45 (1972) 167-178. | MR | Zbl

15 G. Shimura: On the real points of an arithmetic quotient of a bounded symmetric domain. Math. Ann. 215 (1975) 135-164. | EuDML | MR | Zbl

16 C.L. Siegel: Einführung in die Theorie der Modulfunktionen n-ten Grades. Math. Ann. 116 (1939) 617-657. | EuDML | JFM | MR | Zbl

17 C.L. Siegel: Moduln Abelscher Funktionen. Nachr. Akad. Wiss. Gòttingen 25 365-427. | MR | Zbl

18 C.L. Siegel: Topics in complex function theory, Vol. 3. Wiley-Interscience, New York, (1973). | MR | Zbl

19 S. Tsuyumine: On Siegel modular forms of degree three. Amer. J. Math. 108 (1986) 755-862;Addendum, ibid., 1001-1003. | MR | Zbl

20 H. Weber: Theorie der Abel'schen Funktionen vom Geschlecht 3. Berlin (1876). | JFM