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1. Introduction

Recently two very different results on differentiable structures of elliptic
surfaces have been proved. On one hand, there is the following theorem of
Ue [U]:

THEOREM Let X, X’ be relatively minimal elliptic surfaces over smooth curves
S, S’ such that the Euler number e(X) is positive and t,(X) is not cyclic. Then
X and X' are oriented diffeomorphic if and only if e(X) = e(X") and,(X) =
T, (X).

In particular, the diffeomorphism type of such a surface is already deter-
mined by its homeomorphism type.

The elliptic surfaces not covered by Ue ’s result are elliptic surfaces over
P! with at most two multiple fibres F,, F, of multiplicities p and g; their
fundamental group is isomorphic to Z/k where k = g.c.d. (p, q) (Dv], [U]).
If k = 1 and p, = 0 these are the so-called Dolgachev surfaces X, ,, which
are all homeomorphic to P? blown up in nine points [F]. For these surfaces
Friedman and Morgan [FM] resp. Okonek and Van de Ven [OV] proved the

following theorem which is in sharp contrast to Ue’s result.

THEOREM The Dolgachev surfaces X,, with ¢ = 1 mod 2 are pairwise dif-
ferentiably inequivalent.

In [FM] it is furthermore proved that the mapping (p, q) — X,, which
associates to a pair (p, ¢q) of relatively prime integers the diffeomorphism
type of a Dolgachev surface X, is finite-to-one.
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In this paper we tackle the case p, = 0 and g.c.d. (p, q¢) = k > 1. We will
show, that for every fixed & there are infinitely many differentiably inequiv-
alent surfaces X,,. For odd k all X, are homeomorphic by a result of
Hambleton and Kreck [HK], whereas for even k the topological classifi-
cation is still incomplete [HK];* the case £k = 2 has been treated in [O].

The main tool in the proof of this result is Donaldson’s invariant intro-
duced in [D1], [D2]. Most of the techniques which we will use have already
been developed in [OV] and [LO], so we refer to these papers for some
details.

2. Precise statement of results

To describe the surfaces we are dealing with, let Y¥;, Y, Y, resp. x,, x; be
homogeneous coordinates in P? resp. P! and Q,, Q, two irreducible hom-
ogeneous cubic polynomials in Y, ¥;, ¥,. Let X = P! x P? be the zero-set
of the polynomial x,Q, + x,Q,. For generic Q,, Q, the surface X is smooth.
The induced projection to P! defines an elliptic fibration with irreducible
fibres and without multiple fibres. Applying logarithmic transformations of
multiplicities p and ¢ along two smooth fibres, we obtain the surface X,
with multiple fibres F, and F,. The fundamental group of this surface is
m(X,,) = Z/k where k = g.cd. (p, 9).

If we write p = kp’, ¢ = kq’, then there are uniquely determined integers
B,y withyp" + B¢ = 1and 0 < y < ¢ — 1; we define two divisors as
follows:

Go = ﬁFp + VF,
T,, = p'F;, - q'F,.

Clearly T, is a torsion element in H” is a torsion element in H*(X,
because

2)

-

kT,, = pF, — qF, ~ 0

(here ~ denotes linear equivalence). Every vertical divisor D on X, can be
written in the form

D ~ aF + bF, + cF,
where a, b, c € Z and F is a generic fibre. We define

ND) = ap'gk + bqg" + ¢p’.

* See: Note added in proof.
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In particular, since the canonical divisor of X, is

K,~—-F+((p—-—1DF,+(@—-DF,~F—-F, —F,

Pq

we have N(K,,) = p'qk — p’ — q’. An easy calculation shows:
LeMMA For every vertical divisor D ~ aF + bF, + cF, we have
D ~ N(D)C,, + (by — ¢B)T,,.

In other words, the group of vertical divisors modulo torsion is isomorphic
to Z with generator C, .

If L is any ample divisor on X, , then

N(D) = deg,(D)/deg,(C,,),

so every vertical divisor of degree 0 is torsion.

What we need to know about the topology of X, is the following. First
ofall, (X, ,) = 0since K, is vertical. Then, since the geometric genus and
the topological Euler characteristic are invariant under logarithmic trans-
formations, we have p,(X,,) = 0, e(X,,) = 12. Therefore the signature of
X,,is o(X,,) = —8. The intersection form

Sy, H* (X,

.9

Z)/torsion x H*(X,,, Z)[torsion — Z

,q 2

is even if and only if K = 0 mod 2 and p’ + ¢’ = 0 mod 2 [O]. Thus

—E,®H ifk=0mod?2,p + ¢ = 0mod 2,

Sy, &

1> ® 9(—1) otherwise.
We will use the following result of Hambleton and Kreck [HK]:

THEOREM Let M be a closed, oriented, differentiable manifold of real dimen-
sion 4 with n,(M) = Z/k. If k is odd, then the oriented homeomorphism type
of M is determined by the intersection form on H*(M, Z)/torsion.

COROLLARY For fixed odd* k, all surfaces X,, with g.c.d. (p, q) = k are
homeomorphic.

Since the surfaces X, , are algebraic with p, (X, ;) = 0, wehave b, (X,,) = 1
and the Donaldson invariant I' is defined for every X, . For the definition

* See: Note added in proof.
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and the properties of T see [D1], [D2], [FM], [OV]. Now we state our main
result.

THEOREM: For every pair of integers p, q > 1 there exists an ample divisor L,
on X, and an integer n,, > N(K,,) such that

F(prq) = npvq Cl’vq

in H(X,,,

Mg = Mrse

Z)[torsion. If the surfaces X,, and X, are diffeomorphic, then

COROLLARY Given py, q, = 1 there exist only finitely many pairs p, q such X, ,
is diffeomorphic to X,

0:90-

3. Sketch of proofs

Choose an ample divisor LI on X, andlet L,, = L), + nK, ,,n > 0. The
main ingredient for calculating the Donaldson invariant is the moduli space
of L, -stable 2-bundles E with Chern classes ¢,(E) = 0, ¢;(E) = lon X, .
We will denote this space by M, ,. It can be determined by the same methods

as in [LO] and [OV]: Each stable bundle E is given by an extension
0-0Db-K,)»>E->JQ®O0K,, —D)—-0 (%)

where D = bF, + cF, is a vertical divisor with 0 < b <p — 1, 0 <
¢ < g — 1, and z is a simple point in F, U F,. Since there may be torsion
in H*(X, ,, Z), a vertical curve D is not necessarily determined by its degree,
but still there is a unique pair (D, z) defining E by (x) if we require D to have
maximal degree and maximal b. It is not hard to check that given a pair
(D, z,) maximal (in the above sense) for a stable bundle E, with z, € F, (or
F,), then also for every other point z € F, (or F,) the bundle E defined by ()
is stable and D is maximal for E. Hence M, , is as a set the disjoint union of
a finite number of copies of F, and F,, but the analytic structure of M, , is
in general non-reduced. If E,, is the universal bundle over M, x X, ,
which can be constructed as in [OV], [LO], then from [D2] we get

F(Lp,q) = 2(11 [M;ed ]\CZ (|Ep,q) + a2 Kp,q

g

in H*(X,,, Z/torsion, where a,, a, are suitable positive integers (this is the
only difference from the formula for I" used in [FM], [OV]). The coefficient
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a, comes from the multiplicities of M, , ([D2], Prop. 3.13), and a, depends
on the torsion group H, (X, , Z) ([D2], Appendix). As in [OV] the first term
on the right hand side of the equation above consists of a certain number
of copies of F, and F,, so

L, =ak,+C
where C is a vertical divisor with N(C) > 0, or

F(Lp,q) =n,,Cy
withn,, > N(K,,).

Now the same arguments as in [OV] show that for large »n the chamber in
the positive cone in H*(X,,, R) containing L,, = L), + nK,, is indepen-
dent of n; also if f: X, , — X, is an orientation preserving diffeomorphism
and L, is a suitable ample divisor on X, ., then L, and *(L, ) are up to sign
in the same chamber. From the constance of I' on the chambers and
naturality we get

n,,C.=T(L,,) = £T(fXL,) = £/*T(L,) = £n,f*C,)).

Now let D be a divisor on X, , representing the class f*(C,,) € H*(X,
Then D is vertical, and modulo torsion we get from our lemma

Z).

9

n,,Coe = £n,,ND)C,,
implying n,|n,,. Since the same argument works also the other way, we
conclude n,, = n,; this proves the theorem.

Finally for a given N € N there are only finitely many pairs (p, q) with

n,, < N, thus the corollary follows immediately.
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Note added in proof: Hambleton and Kreck have meanwhile extended their topological
classification to smooth, oriented 4-manifolds with fundamental group =, = Z/k,
k = 0 mod 2 (I. Hambleton, M. Kreck: Smooth structures on algebraic surfaces with cyclic
fundamental group, preprint 1987). Their result implies in particular that the oriented homeo-
morphism type of the surfaces X,, with g.c.d. (p, 9) = k = 0 mod 2 is also determined by
their intersection form. From the corollary to our main theorem it follows that all these
surfaces have infinitely many smooth structures too.
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