The factoriality of Zariski rings
Compositio Mathematica, Volume 63 (1987) no. 3, pp. 273-290.
@article{CM_1987__63_3_273_0,
     author = {Lang, Jeffrey},
     title = {The factoriality of {Zariski} rings},
     journal = {Compositio Mathematica},
     pages = {273--290},
     publisher = {Martinus Nijhoff Publishers},
     volume = {63},
     number = {3},
     year = {1987},
     mrnumber = {909383},
     zbl = {0631.13017},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1987__63_3_273_0/}
}
TY  - JOUR
AU  - Lang, Jeffrey
TI  - The factoriality of Zariski rings
JO  - Compositio Mathematica
PY  - 1987
SP  - 273
EP  - 290
VL  - 63
IS  - 3
PB  - Martinus Nijhoff Publishers
UR  - http://archive.numdam.org/item/CM_1987__63_3_273_0/
LA  - en
ID  - CM_1987__63_3_273_0
ER  - 
%0 Journal Article
%A Lang, Jeffrey
%T The factoriality of Zariski rings
%J Compositio Mathematica
%D 1987
%P 273-290
%V 63
%N 3
%I Martinus Nijhoff Publishers
%U http://archive.numdam.org/item/CM_1987__63_3_273_0/
%G en
%F CM_1987__63_3_273_0
Lang, Jeffrey. The factoriality of Zariski rings. Compositio Mathematica, Volume 63 (1987) no. 3, pp. 273-290. http://archive.numdam.org/item/CM_1987__63_3_273_0/

1 P. Blass: Zariski Surfaces. Dissertations Mathematicae 200 (1980). | MR | Zbl

2 P. Blass: Some geometric applications of a dinerential equation in characteristic p > 0 to the theory of algebraic surfaces. Contemp. Math. A.M.S. 13 (1982). | Zbl

3 P. Blass: Picard groups of Zariski Surfaces I. Comp. Math. 54 (1985) 3-86. | EuDML | Numdam | MR | Zbl

4 P. Blass and J. Lang: Picard groups of Zariski Surfaces II. Comp. Math. 54 (1985) 36-39. | Numdam | MR | Zbl

5 R. Fossum: The Divisor Class Group of a Krull Domain. Springer-Verlag, New York (1973). | MR | Zbl

6 H.W. Gould: Combinatorial Identities. Morgantown, W. Va (1972). | MR | Zbl

7 R. Hartshorne: Algebraic Geometry. Springer-Verlag, New York (1977). | MR | Zbl

8 I. Kaplansky: Commutative Rings. Allyn and Bacon, Boston (1970). | MR | Zbl

9 J. Lang: An example related to the affine theorem of Castelnuovo. Michigan Math. J. 28 (1981). | MR | Zbl

10 J. Lang: The divisor classes of the hypersurfaces zpn = G(x1, ..., xm) in characteristic p > 0. Trans A.M.S. 278 2 (1983). | MR | Zbl

11 J. Lang: The divisor class group of the surface zpn = G(x, y) over fields of characteristic p > 0. J. Alg. 84, 2 (1983). | MR | Zbl

12 J. Lang: The divisor classes of the surface zp = G(x, y), a programmable problem. J. Alg. 100, (1986).

13 J. Lang: Locally factorial generic Zariski surfaces are factorial. J. Alg., to appear. | Zbl

14 M. Nagata: Local Rings. John Wiley & Sons, Inc. (1962). | MR | Zbl

15 M. Nagata: Field Theory. Marcel Dekker, Inc. (1977). | MR | Zbl

16 Stohr and Voloch: A formula for the Cartier operator on plane algebraic curves. Submitted for publication.

17 P. Samuel: Lectures on Unique Factorization Domains. Tata Lecture Notes (1964). | MR | Zbl

18 R. Walker: Algebraic Curves. Princeton University Press, Princeton, (1950). | MR | Zbl