@article{CM_1988__65_2_171_0, author = {Kotus, Janina and Klok, Fopke}, title = {A sufficient condition for $\Omega $-stability of vector fields on open manifolds}, journal = {Compositio Mathematica}, pages = {171--176}, publisher = {Kluwer Academic Publishers}, volume = {65}, number = {2}, year = {1988}, zbl = {0659.58030}, mrnumber = {932642}, language = {en}, url = {http://archive.numdam.org/item/CM_1988__65_2_171_0/} }
TY - JOUR AU - Kotus, Janina AU - Klok, Fopke TI - A sufficient condition for $\Omega $-stability of vector fields on open manifolds JO - Compositio Mathematica PY - 1988 SP - 171 EP - 176 VL - 65 IS - 2 PB - Kluwer Academic Publishers UR - http://archive.numdam.org/item/CM_1988__65_2_171_0/ LA - en ID - CM_1988__65_2_171_0 ER -
%0 Journal Article %A Kotus, Janina %A Klok, Fopke %T A sufficient condition for $\Omega $-stability of vector fields on open manifolds %J Compositio Mathematica %D 1988 %P 171-176 %V 65 %N 2 %I Kluwer Academic Publishers %U http://archive.numdam.org/item/CM_1988__65_2_171_0/ %G en %F CM_1988__65_2_171_0
Kotus, Janina; Klok, Fopke. A sufficient condition for $\Omega $-stability of vector fields on open manifolds. Compositio Mathematica, Tome 65 (1988) no. 2, pp. 171-176. http://archive.numdam.org/item/CM_1988__65_2_171_0/
1 Dynamical systems: stability theory and applications, Lecture Notes in Math. 35 (1967). | MR | Zbl
and ,2 An extension of Peixoto's structural stability theorem to open surfaces with finite genus, Lecture Notes in Math. 1007 (1983) pp. 60-87. | Zbl
, , and ,3 Absolutely Ω-stable diffeomorphisms, Topology 11 (1972) 195-197. | Zbl
,4 Ω-stability of plane vector fields, Bol. Soc. Bras. Mat. 12(1) (1981) 21-28. | Zbl
,5 Global structural stability of flows on open surfaces, Mem. Amer. Math. Soc. 37(261) (1982). | MR | Zbl
, ,6 Ω = Per for generic vector fields on some open surfaces, Demonstratio Mathematica XVIII(1) (1985) 325-340. | Zbl
,7 Introducao aos sistemas dinamicos, Projéto Euclides, Ed. Edgard Blucher (1978).
and ,8 Vector fields with no wandering points, Amer. J. Math. 98 (1976) 415-425. | MR | Zbl
and ,