Unitary representations of the Virasoro algebra and a conjecture of Kac
Compositio Mathematica, Volume 67 (1988) no. 3, pp. 315-342.
@article{CM_1988__67_3_315_0,
     author = {Chari, Vyjayanthi and Pressley, Andrew},
     title = {Unitary representations of the {Virasoro} algebra and a conjecture of {Kac}},
     journal = {Compositio Mathematica},
     pages = {315--342},
     publisher = {Kluwer Academic Publishers},
     volume = {67},
     number = {3},
     year = {1988},
     mrnumber = {959215},
     zbl = {0661.17022},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1988__67_3_315_0/}
}
TY  - JOUR
AU  - Chari, Vyjayanthi
AU  - Pressley, Andrew
TI  - Unitary representations of the Virasoro algebra and a conjecture of Kac
JO  - Compositio Mathematica
PY  - 1988
SP  - 315
EP  - 342
VL  - 67
IS  - 3
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1988__67_3_315_0/
LA  - en
ID  - CM_1988__67_3_315_0
ER  - 
%0 Journal Article
%A Chari, Vyjayanthi
%A Pressley, Andrew
%T Unitary representations of the Virasoro algebra and a conjecture of Kac
%J Compositio Mathematica
%D 1988
%P 315-342
%V 67
%N 3
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1988__67_3_315_0/
%G en
%F CM_1988__67_3_315_0
Chari, Vyjayanthi; Pressley, Andrew. Unitary representations of the Virasoro algebra and a conjecture of Kac. Compositio Mathematica, Volume 67 (1988) no. 3, pp. 315-342. http://archive.numdam.org/item/CM_1988__67_3_315_0/

1 D. Friedan, Z. Qiu and S. Shenker, Conformal invariance, unitarity and two-dimensional critical exponents. Vertex Operators in Mathematics and Physics, 419-449, MSRI Publications No. 4, Springer (1985). | MR | Zbl

2 D. Friedan, Z. Qiu and S. Shenker, Superconformal invariance in two dimensions and the tricritical Ising model, Phys. Lett. 151 B (1985) 37-43. | MR

3 D. Friedan, Z. Qiu and S. Shenker, Details of the non-unitarity proof for highest weight representations of the Virasoro algebra, Commun. Math. Phys. 107 (1986) 535-542. | MR | Zbl

4 P. Goddard, A. Kent and D. Olive, Virasoro algebras and coset space models, Phys. Lett. 152B (1985) 88-93. | MR | Zbl

5 P. Goddard, A. Kent and D. Olive, Unitary representations of the Virasoro and super-Virasoro algebras, Commun. Math. Phys. 103 (1986) 105-119. | MR | Zbl

6 V.G. Kac, Lie superalgebras, Advances in Math. 26 (1977) 8-96. | MR | Zbl

7 V.G. Kac, Highest weight representations of infinite-dimensional Lie algebras. Proceedings of the International Congress of Mathematicians (Helsinki, 1978), 299-304, Acad. Sci. Fennica, Helsinki (1980). | MR | Zbl

8 V.G. Kac, Some problems of infinite-dimensional Lie algebras and their representations. Lie algebras and related topics, 117-126, Lecture Notes in Mathematics, 933, Springer (1982). | MR | Zbl

9 V.G. Kac and M. Wakimoto, Unitarizable highest weight representations of the Virasoro, Neveu-Schwarz and Ramond algebras. Conformal groups and related symmetries: physical results and mathematical background, 345-371, Lecture Notes in Physics, 261, Springer, 1986. | MR

10 I. Kaplansky, The Virasoro algebra, Commun. Math. Phys. 86 (1982) 49-54. | MR | Zbl

11 I. Kaplansky and L.J. Santharoubane, Harish Chandra modules over the Virasoro algebra. Infinite-dimensional groups with applications, 217-231, MSRI Publications No. 5, Springer (1985). | MR | Zbl

12 A.A. Kirillov, Unitary representations of the group of diffeomorphisms and of some of its subgroups, Selecta Math. Soviet. 1 (1981) 351-372. | MR | Zbl

13 A.W. Knapp, Representation theory of semisimple groups, Princeton University Press, Princeton (1986). | MR | Zbl

14 I.A. Kostrikin, Irreducible graded representations of Lie algebras of Cartan type, Soviet Math. Dokl. 19 (1978) 1369-1371. | Zbl

15 R.P. Langlands, On unitary representations of the Virasoro algebra. Proceedings of the Montreal workshop on infinite-dimensional Lie algebras and their applications, S. Kass, ed., to appear. | MR | Zbl

16 A. Tsuchiya and Y. Kanie, Unitary representations of the Virasoro algebra, Duke Math. J. 53 (1986) 1013-1046. | MR | Zbl

17 D.A. Vogan, Jr., Representations of real reductive Lie groups. Progress in Mathematics 15, Birkhäuser, Boston (1981). | MR | Zbl

18 E.T. Whittaker and G.N. Watson, A course of modern analysis, 4th edition, Cambridge University Press, Cambridge (1978). | JFM | MR