A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations
Compositio Mathematica, Tome 68 (1988) no. 2, pp. 221-239.
@article{CM_1988__68_2_221_0,
     author = {Naito, Hisashi},
     title = {A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations},
     journal = {Compositio Mathematica},
     pages = {221--239},
     publisher = {Kluwer Academic Publishers},
     volume = {68},
     number = {2},
     year = {1988},
     mrnumber = {966581},
     zbl = {0669.35049},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1988__68_2_221_0/}
}
TY  - JOUR
AU  - Naito, Hisashi
TI  - A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations
JO  - Compositio Mathematica
PY  - 1988
SP  - 221
EP  - 239
VL  - 68
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1988__68_2_221_0/
LA  - en
ID  - CM_1988__68_2_221_0
ER  - 
%0 Journal Article
%A Naito, Hisashi
%T A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations
%J Compositio Mathematica
%D 1988
%P 221-239
%V 68
%N 2
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1988__68_2_221_0/
%G en
%F CM_1988__68_2_221_0
Naito, Hisashi. A stable manifold theorem for the gradient flow of geometric variational problems associated with quasi-linear parabolic equations. Compositio Mathematica, Tome 68 (1988) no. 2, pp. 221-239. http://archive.numdam.org/item/CM_1988__68_2_221_0/

1 Th. Aubin: Nonlinear analysis on manifolds, Monge-Amperé equations. Springer-Verlag, Berlin-Heiderberg -New York (1983). | MR | Zbl

2 N. Chafee and E. Infant: A bifurcation problem for a nonlinear parabolic equation. J. Appl. Anal. 4 (1974) 17-37. | MR | Zbl

3 J. Eells and L. Lemaire: Selected topics in harmonic maps. C.B.M.S. Regional Conference Series in Math. Vol. 50, (1983). | MR | Zbl

4 J. Eells and J.H. Sampson: Variational theory in fiber bundles. Proc. U.S. Japan Seminar in Diff. Geom. (1965) pp. 22-33. | MR | Zbl

5 J. Eells and J.H. Sampson: Harmonic mapping of Riemannian manifolds. Amer. J. Math. 86 (1964) 109-160. | MR | Zbl

6 C.L. Epstein and M.I. Weinstein: A stable manifold theorem for the curve shortening equation. Comm. Pure Appl. Math. 40 (1987) 119-139. | MR | Zbl

7 D. Gillberg and N.S. Trudinger: Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-Heiderberg -New York (1983). | MR | Zbl

8 M. Gage And R.S. Hamilton: The equation shrinking convex plain curves. J. Diff. Geom. 23 (1986) 69-96. | MR | Zbl

9 D. Henry: Geometric Theory of Semilinear Parabolic Equations. L.N.M. 840, Springer-Verlag, Berlin-Heiderberg- New York (1981). | MR | Zbl

10 R.S. Hamilton: Harmonic Maps of Manifolds with Boundary. L.N.M. 471, Springer-Verlag, Berlin-Heiderberg- New York (1975). | MR | Zbl

11 R. Palais: Foundations in Non-linear Global Analysis, Benjamin. New York (1967). | Zbl

12 I. Mogi and M. Ito: Differential Geometry and Gauge Theory (in Japanese). Kyoritsu, Tokyo (1986).

13 H. Naito: Asymptotic behavior of solutions to Eells-Sampson equations near stable harmonic maps. preprint. | MR | Zbl

14 H. Naito: Asymptotic behavior of non-linear heat equations in geometric variational problems. preprint.

15 L. Simon: Asymptotic for a class of non-linear evolution equations, with applications to geometric problem. Ann. of Math. 118 (1983) 525-571. | Zbl

16 L. Simon: Asymptotic behaviour near isolated singular points for geometric variational problems. Proc. Centre for Math. Anal., Australian National University, (Proceeding of Miniconference on Geometry and Partial Differential Equations) Vol. 10 (1985) pp. 1-7. | MR | Zbl