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Abstract. We study harmonic diffeomorphisms between BnB{a1, ... , ak} and a Riemannian
manifold u. For n = 2 and k = 0, we prove that such diffeomorphisms are minimizing
harmonic maps, we generalize this result by replacing B2 by any Riemannian surface. For
n  3 we give a sufficient condition for such diffeomorphisms to be a minimizing harmonic
map. We apply it in the case where W is a hypersurface of revolution in Rn+’. This allows us
to prove that, under some conditions, an equivariant harmonic map is necessarily minimizing.
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Introduction

In this paper we consider a harmonic diffeomorphism 0 between the unit
ball of Rn, Bn, provided with the Euclidean metric c and a Riemannian
manifold u. We study the maps into e using the chart U-1 on u. Let
g = (gii) be the metric coefficients of u in the chart U-1, then the Euler
equation which expresses that 0 is harmonic is

We will integrate this equation.
We will prove that, if n = 2, then 0 is a minimizing harmonic map. Our

idea in that case is to decompose g as the sum of two metrics g’ and g" such
that g’ is a conformal metric of c, (B2, g") has nonpositive Gauss curvature
and the identity, Id, is harmonic between (B2, c) and (B2, g"). It then follows
that Id is a minimizing harmonic map between (B2, c) and (B2, g’) and that,
by a theorem of Hartman [Hal], Id is also a minimizing harmonic map
between (B2, c) and (B2, g"). Therefore t7 is a minimizing harmonic map
between (B2, c) and ou. We generalize this result by replacing (B2, c) by any
Riemannian surface.

* Supported by a grant from D.R.E.T., D.G.A., France.
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For n  3, we will find only sufficient conditions to assure that 0 is a
minimizing harmonic map. Our key tool in that case is an adaptation of the
projection and averaging procedure introduced in [CG]. We also use, as in
[CG], the coarea formula of Federer whose importance in the framework of
harmonic map was made clear by Almgren, Browder and Lieb [ABL].

In fact this approach holds also if we assume that 0 has a finite number
of punctual singularities, and then is diffeomorph to Bn minus the set of
singularities.
Then given a target manifold u and a harmonie map G which is a

diffeomorphism between Bn and u, we want to know if the corresponding
gij verify the sufficient conditions obtained in the first section. That is the
subject of the second section. In this part we assume that RY and 0 are
SO(n)-equivariant, i.e. rotationally symmetric. We find particularly interesting
results in the cases n = 3 and n = 4. We show here that if U is harmonic
and if the metric coefficients of RY verify some monotonicity condition then
o is minimizing harmonic.
These properties are exploited in the third section for n = 3. We give

some example of minimizing harmonic map. We conclude with the following
result. Let e be the Riemannian manifold with boundary obtained by
putting on a ball B3(l) of radius 1 (where 1 is a positive real number) the
metric

Here gii and gl are maps of class C2 on (0, l] . We let b(r) = r2g-i(r), we
assume that b is of class C2 on [0, 1], that b’(r) is positive on (0, 1) and that
b’(0) = 0. Then if b’(l) &#x3E; 0 or if b’(l) = 0 and b"(l)  - 1 4 there exists a
regular SO(3)-equivariant minimizing map u (with respect to the boundary
conditions u(x) = lx on êB 3). And if b’(l ) = 0, - 1 4  b"(1)  0 and

b’(s)  b"(l)(s - l) for any s in [0, l], lx/|x| is minimizing.

Notations

n is an integer greater than 1. The canonical orthonormal basis of Rn is

denoted (el, ... , en), the Euclidean metric c and the scalar product , &#x3E;.
For any point a of Rn and any positive real number Q, Bn (a, g) is the open
ball of center a and of radius o in Rn ; we note Bn = Bn(0, 1) and
Sn- 1 = aBn (0, r).
For any Borelian subset A of Rn and any r in [0, n], 1’(A) is the Hausdorff

measure of A of dimension r and lAI the Lebesgue’s measure of A. All the
derivatives are taken in the distribution sense.
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For any open subset Q of Rn, C1c(03A9, R) is the set of maps of class C’ from
Q to R with compact support in Q.

1. The général approach

Let us suppose that W is a manifold of class Cl provided with a Riemannian
metric of class C° and that U is a Cl -diffeomorphism between B n
BnB{a1, ... , ak} and W, where a, , ... , ak are distinct points called

singularities; k belongs to N and when n = 2 we will assume that there is no
singularity. We give to each point u of W the coordinates yl = U-1(u), el).
Then using this chart the metric on u will be described by continuous map
gij from Bn* to R such that for every x in Bn*, (g,,(x» is a positive definite
n-dimensional two-order symmetric tensor. At a point u of W such that
U(y) = u, we let using Einstein’s convention

Furthermore we make the following hypothesis on the gi, coefficients:
For any singularity al in Bn, let Bn(al, rl) be a neighbourhood of this

singularity which does not meet any other singularity or any point of ôBn.
There exist strictly positive constants K1, K2, K3 and K4 such that

and ~Bn(al,rl) gii (x) dx  + 00.

Moreover we assume sometimes that there exist continuous maps hl from
(0, r,] to [03B4, + oo) where b is a positive constant, such that hl are in
L’([0, r,], R) and

dl, ~x E Bn(al’ rl), ~y E Rn, if y is parallel to (x - al) (1.3)

We remark that the above hypothesis on gi, are quite reasonable. Indeed (1.1),
(1.2) and (1.3) are satisfied if e is the interior of a compact Cl -Riemannian
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manifold with boundary. For this reason we will call (1.1), (1.2) and (1.3)
compactness conditions.
We define the set H1* Bn, u) to be the set of maps U from Bn into Où such

that if Y = U-1  U, then

Y belongs to H1(Bn, Bn ) (1.4)

in the trace sense, Y(x) = x for a.e. x on 8Bn (1.5)

E( U ) will be called the energy of U.
An obvious consequence of (1.2) is then that 0 belongs to H1*(Bn, 0//)

since

Let C1*(Bn, u) be the set of maps U from Bn to u which are in H1*(Bn, u)
and which satisfy

there exists a map Z of class Cl from Bn into Bn such that (1.8)
Y(x) = Z(x) for a.e. x in Bn

and

Z-1{a1, ... , ak} is finite and at every point of this set, VZ is (1.9)
invertible.

In the following we will identify Z with Y.
We will say that -0 is a minimizing harmonic map if -0 is in H1*(Bn, u) and

satisfies

We will say that Ü is a C1*-minimizing harmonie map if Û is in C1*(Bn, u)
and satisfies
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Finally 0 will be called weakly harmonic if for any ~ in Cl (Bn, Rn ) the
following limit exists and is zero

We now give the Euler equations of a weakly harmonic map.

PROPOSITION 1: 0 is weakly harmonic if and only if the following equalities
hold on Bn

Lf’ 0 is a C1*-minimizing harmonic map then 0 is weakly harmonic.

Proof: Let 9 be in C1c(Bn, Rn ) and let us choose À small enough to ensure
that Y;: x - x + Àcp(x) is a Cl -diffeomorphism of Bn and that 0 0 Y;
belongs to C1*(Bn, u). Let X,. be the inverse of Y; then we have, using again
Einstein’s convention

We let

We have
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The first term is (Y0) = (Id), the second one divided by À is constant and
the third one divided by 03BB tends to zero when tends to zero because of
Lebesgue’s theorem. Hence E’(U, ~) exists and

And E"(U, ~) is zero for every test map 9 in C1c(Bn, Rn) if and only if (1.13)
is true in Bn.

Now if we suppose that 0 is a C’-minimizing harmonic map it is obvious
that £’(0, cp) is zero for every cp in C1c(Bn, Rn), this proves the second
assertion of the theorem. Q.E.D.

The equations (1.13) have a simple integration.

THEOREM 2: Let us suppose that o¡¡ has no singularity i.e. Bn = Bn. Then the
map gij of class CO from Bn to the set of the symmetric positive definite
two-order tensors, is solution of (1.3) if and only if
2022 If n = 2, there exist maps
~ À of class CO from B2 to (0, + 00)
~ cp holomorphic from B2 to C such that
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The value of the energy of the corresponding harmonic map 0 is then
E(U) = ~B2 À(x)dx.

. If n  3, there exist maps
o GiJ = Gii of class c2 from Bn to R, where i, j ~ {1, ..., n}, and i =1= j.
o Ci of class CO from Bn -1 to R, where i ~ {1, ... , n} such that if we note

Gù(x) = (xi)2cu(x1, ... , X, - 1, xi+, ... xn). 

with the conditions which express that (gij(x)) is positive definite.

Proof: (a) Case n = 2. In that case, the result is classical (see e.g. [EL] (10.5)
or [J] Lemma 1.1). The equations (1.13) becomes:

We state a = (g22 - g11)/2, b = g12, then

Hence if cp(x) = a(x) + ib(x), we conclude that cp is holomorphic. If we
note 03BB(x) = 2 tr [g(x)], we obtain then (1.14). The condition À(x) &#x3E; |19 (x) |
expresses that g(x) is positive definite.
(b) Case n  3. We let
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Then (1.13) gives

For i =1= y, let us pose

Hence

From ( 1.16)

We have then

where xy - (x1, ..., xy-’, x03B3+1, ... , xn). So if we write Gir (x) -
(xl)2cl(l) we obtain

Now we invert the relations t, = [03A3j gll] ] - 2g;; by

Then (1.15) follows. The converse is straightforward. Q.E.D.

We now investigate the minimality of U. We start with the case n = 2 (and
k = 0). We prove
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THEOREM 3: ll is a minimizing harmonie map if n = 2.

Remark : The proof will show that, if g is regular up to the boundary of B2,
then (7 is the unique minimizing harmonic map which agrees with Ü on 8B2.

Proof of Theorem 3: We use the notations of theorem 2. First we remark that
we may assume ~ regular on B2; indeed (7 will be minimizing if (7 restricted
to B2(0, 1 - 03B5) is minimizing for any 6 in (0, 1). Let w: B2 ~ (0, + oo) be
defined by

For 03B5 small enough but positive we have (see (1.1))

We choose such a E, and we define the metric on B2

and the metric on B2

with z - x’ + ix2.

Clearly g - g’ + g". The map Id is a conformal map between (B2, c) and
(B2, g’ ) hence is minimizing between these two Riemannian surfaces (for the
energy defined with c and g’; see e.g., [EL] (10.3)). Moreover, see Appendix
B, (B2, g") has a negative Gauss curvature. Proceeding as in Appendix C we
can construct on R 2 a metric 03C3 such that 03C3 = g" on B2, (R2, a) is complete,
the Gauss curvature of (R2, 03C3) is negative and (R2, 6) satisfies Morrey’s
uniformity condition, see the remark in Appendix C. Then a theorem due
to Morrey [M] asserts that there exists a map v : (B2, c) ~ (R 2 6) which is
the identity on ôB2 and is minimizing. Then using a theorem due to Hartman
[Ha 1] ] (more precisely its extension to manifolds with boundary, see [S 1 ]
theorem 2.10) we have, since the Gauss curvature of (R2, 03C3) is negative and
since v and Id are homotopic, v = Id. Hence Id is a minimizing map from
(B2, c) into (B2, g"); moreover Id is also minimizing from (B2, c) into

(B2, g’) hence Id is minimizing from (B2, c) into (B2, g’ + g") = (B2, g).
Q.E.D.
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The method used can be extended to more general Riemannian surfaces
than (B2, c). Indeed it allows to prove the following

THEOREM 3’: Let (M, h) and (N, g) be two Riemannian compact surfaces of
class Cx possibly with boundary. Then any smooth harmonic diffeomorphism
between (M, h) and (N, g) is minimizing in its homotopy class. Moreover, if
aM is non-empty or if the genus of M is strictly larger than 1, then such a

diffeomorphism is the unique minimizing map in its homotopy class.

Remark : Of course when aM :0 Ø the homotopies are required to agree with
u on aM. When aM is empty, Jost and Schoen have proved in [JS] the
existence of a harmonic diffeomorphism between (M, h) and (N, g) if M and
N are homeomorphic surfaces.

Proof of Theorem 3’ : We start with the case aM = Ø. If the genus of M is
0 the result is well known. Therefore we assume that the genus of M is

positive. Then there exists, on M, a metric ho, in the conformal class of h,
the Gauss curvature of which is nonpositive. In isothermal charts we have

Let u be a harmonic diffeomorphism between (M, h) and (N, g) and let 8 be
a positive number. Let h" be the metric defined on M by

where, with z - x’ + ix2, 

We recall, see e.g. [EL] (10.5) or [J] Lemma 1.1, that cp(dz)2 is holomorphic;
we note also that h" is independent of the choice of the isothermal coordinates.
We can define also, for 8 small enough, another metric on M by

where



185

again h’ is independent of the choice of the isothermal coordinates. The map
u-1: N ~ M and the metrics h’ and h" on M induce metrics, denoted g’ and
g", on N. Clearly we have g = g’ + g". The map u is a conformal map
between (M, h) and (N, g’) hence is minimizing - for the energy defined by
h and g’ - in its homotopy class, see e.g. [EL] (10.3). We remark also that
u is harmonic between (M, h) and (N, g"), since ~(dz)2 is holomorphic.
Moreover the Gauss curvature of (N, g") is nonpositive (see Appendix B).
Hence it follows from a theorem due to Eells and Sampson [ES] first

corollary of page 158, that, in the homotopy class of u, there is a harmonic
map v : (M, h) ~ (N, g") whose energy is an absolute minimum (one could
alternatively use a theorem due to Sacks-Uhlenbeck [SU] and Lemaire [Le 1 ],
noting that n2(N) = 0). Now, still because the Gauss curvature of N is

nonpositive, from a theorem due to Hartman, [Hal] theorem E, u and v
considered as maps from (M, h) into (N, g") have the same energy. We
conclude that u : (M, h) ~ (N, g’ + g") has minimum energy in its homo-
topy class. Uniqueness when the genus of M is strictly larger than 1 follows
from the above decomposition of g and [Hal] corollary p. 675.

In the case ~M ~ ~ we just sketch the proof since the arguments are quite
similar to those used above and in the proof of theorem 3. As above we
decompose g as the sum of two metrics g’ and g" such that u is conformal
(hence minimizing) between (M, h) and (N, g’), u is harmonic between
(M, h) and (N, g") and the Gauss curvature of (N, g") is negative. It then
follows from Appendix C, [Le2] and [S1] Theorem 2.10 (one can alternatively
use [S2], see [EL] (12.11)) that u is minimizing in its homotopy class from
(M, h) into (N, g"). Hence u is minimizing in its homotopy class from (M, h)
into (N, g). Uniqueness comes from the above decomposition of g and [SI] 
Theorem 2.10. Q.E.D..

Remark : It follows from Theorem 3’ that if u is a smooth harmonic map (not
necessarily a diffeomorphism) between a Riemannian surface (M, h) and a
Riemannian manifold (not necessarily of dimension 2) (N, g) then the
energy of u 0 0 is not less than the energy of u, for any smooth map 0 from
M to M which is homotopic to the identity, with fixed boundary data if ôM
is non-empty. Indeed first note that the identity is a harmonic diffeomorphism
between (M, h) and (M, u*(g) + Eh) for E positive. Then apply Theorem 3’
and let e goes to zero.

Now let us turn to the case n  3.

Let A be any topological space which is provided with a Borelian measure
dm(ot). Let 7r be a continuous map from A x Bn into R2. We note nrx =

03C0(03B11, ). We assume that for any a in A nrx is a horizontal conformal map
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(see e.g. [BI] p. 122 for a definition) whose fibres are intersections of

(n - 2)-area minimizing surfaces with B .

Remark: The maps na are harmonic morphisms (see [BCD] or [BE]). One
can find interesting results - and examples - concerning harmonic morphisms
in [B1], [B2] and [BW].
Our next theorem comes directly from the method introduced in [CG].

THEOREM 4: Let us assume that
2022 C is a Cl -diffeomorphism between Bn* and Gll and the gij are of class C’

on Bn* and satisfy (1. 1) and (1.2).
2022 There exists a measurable,fùnction f from A x R2 to [0, + 00] such that
for every x in Bn and every y in R n

Then 0 is a C1*-minimizing harmonic map.

EXAMPLE: A is the set of Euclidean rotations in Rn, SO(n), dm(03B1) is the Haar
measure on S0(n), and for every R in SO(n) we pose nR(x) = (Rx, e1&#x3E;,
Rx, e2&#x3E;).

Proof of Theorem 4: We follow [CG]. Let U be in C1*(Bn, u) and let

Y = U-1  U. From (1.17) we have using Einstein’s convention

for a.e. x in Bn*. So we can write

and using Fubini’s theorem

Let J2(03C003B1 (Y(x)) be the absolute value of the 2-determinant of the restriction
of ~(03C003B1  Y ) to the orthogonal complement of the kernel of ~(03C003B1  Y ) (see
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[F], p. 1.7.6. for a more precise definition). As it was remarked in [ABL] we
have the inequality

Then

We now proceed as in [ABL] to give a lower bound of

We apply the coarea formula of Federer to transform the right hand term
of this inequality (see [F], Theorem 3.2.12, p. 249).

Using Sard’s theorem (na 0 Y)-1(z) is empty or a (n - 2)-submanifold of Bn
for a.e. z in R2, the boundary of which is contained in aBn. Hence it follows
from (1.5) that a(na 0 Y)-1(z) = ~03C003B1-1(z) for a.e. z in R2. But 03C0-103B1(z) is a

minimizing (n - 2)-submanifold in Bn and this implies

Hence we obtain

and since n, is horizontally conformal

Finally, using first (1.18) with Û, and then (1.19) we have
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An immediate consequence of theorem 4 is

THEOREM 5: Let us assume that
0 0 is a C’-diffeomorphism between Bn* and 0/1. The gii are of class CO on
Bn and satisfy (1.1), (1.2) and (1.3).

0 There exists a measurable map f from A x R 2 to [0, + oo] such that for
every x in B" and every y in Rn

Then C is a minimizing harmonic map.

Proof: Since we have the hypothesis (1.3) we can apply the Appendix A of
this paper. Then it suffices to apply Theorem 4 to obtain (1.10). Q.E.D.

Il. Applications to some problems with symmetry

In this section we assume that n  3 and we study the special case where the
Riemannian manifold u and the map t7 are SO(n)-equivariant as follows.
We can define an action of SO(n) on u by

Then we will say that u and 0 are SO(n)-equivariant if the metric gi, of u
defined in the above section is invariant under the action of SO(n).
Hence for every u in u and for every v in Tu u, if we note x = U-1(u),

y = (~U)-1(u)v,

where y~ = y, (x/|x|)&#x3E;, y~ = y - (x/|x|)(x/|x|), y&#x3E;, and g~ and g~ are
strictly positive functions, are continuous on Bn*, and depend uniquely on
r = |x|.

It is obvious in this case that either we have no singularity, and Bn* = Bn,
or we have one singularity which is 0 and Bn* = BnB{0}. We will give
applications of Theorem 4 by choosing:
. A is S0(n)
. dm(03B1) is the Haar-measure on SO(n), d03C3(R).
. For every R in SO(n),
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In this case, we can write (1.17) as follows

First let us write equation (1.13) which express that U is weakly harmonic:
For every y = 1, ... , n,

and

Hence (1.13) becomes

or

We let a(r) = r2g~(r). The (n - 1)-dimensional measure of the image of the
sphere of radius rSn - 1r by (7 is |Sn - 1|a(r)(n - 1)/2. Hence a and g~ are of class
Cl on (0, 1) since 0/1 is a manifold of class Cl and Û is of class Cl. It

follows from the above equation that the weak derivative of r2(n-l)gll is equal
a.e. to a continuous map. Hence a, g1 and gl, are of class Cl on (0, 1). We
have proved:
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PROPOSITION 6: If u and Ü are SO(n)-equivariant, if the gij are continuous and
if Ü is weakly harmonic on Bn* then gll and g~ are of class C’ on (0, 1) and
satisfy

Remark: If there exists an isometric embedding a of Gll into Rn+1 such that

03C3(u) is a hypersurface of revolution and such that the image by u of the
action of SO(n) on Gll is the natural action of SO(n) on 03C3(U), then at a point
u of e, a(r) represents the square of the distance of a(u) to the axis of
revolution of 03C3(U).

PROPOSITION 7: Let us suppose that
2022 U is a C’-diffeomorphism between Bn* and Gll and the gij are of class C’

on Bn* and verify (1.1) and (1.2).
2022 U and OU are SO(n)-equivariant.
2022 There exists a nonnegative integrable map qJ of class CO on (0, 1] such

that for every r in (0, 1)

Then (j is a Cl-minimizing harmonic map.

Proof : Let U1 and VI be respectively a Riemannian manifold and a Cl-diffeo-
morphism between Bn* and *1 such that the metric on OUI is given in the chart
U,71 by

Let us show that this metric is invariant under the action of SO(n). For every
R in SO(n), we have,
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The metric on Wi is then given by two strictly positive functions 03B3~ and 03B3~
on B n which depend only on r = |x|:

To compute y,, and Y -1’ it suffices to evaluate them at the point the coordinates
of which are re, in the chart Ul 1

We need the following lemma.

LEMMA 8: Let us assume that h is a real map of class CO on [0, 1], then

PROOF oF LEMMA 8: Let us assume first that h is C’ on [0, 1] and let us write
F(x) - h[((x1)2 + (x2)2)1/2]. We have

The left hand term in (2.9) is
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by setting t = [(Xl)2 + (x2)2r/2. If we integrate by parts

The right hand term is

Then (2.9) and the expressions of L and R give (2.8). The extension of (2.5)
to the case where the map h is only continuous follows by density. D

End of the proof of Proposition 7: Using Lemma 8 in (2.7) we find

Now we remark that

Therefore

Hence we deduce from this that 03B3~ = g 1- and YII = gll and so gij = 03B3ij on Bn*.
We can then apply Theorem 4 to conclude. Q.E.D.
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PROPOSITION 9: Let us suppose that
. U is a C’-diffeomorphism between Bn* and U and the gli are of class C’

on Bn* and verify (1.1) and (1.2).
,0 Ù and W are S0(n)-equivariant.
. lI is weakly harmonic.
. There exists a nonnegative and continuous map qJ on (0, 1] such that

- Either

- Or

Then U is a C1*-minimizing harmonic map.

Proof: The idea of the proof is to show that the hypothesis of Proposition
7 are in fact satisfied in both cases.

Let yjj and 03B3~ with

These maps are of class C’ on (0, 1] since 9 is continuous. We will show that
they satisfy (2.2) or

hence
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We find that r(yu - (n - 1)03B3~)’ is precisely 2(n - 1 )(yi - yu). This proves
(2.11) which can be rewritten as

But since Û is weakly harmonie and g1- satisfy the same equation (2.3).
Now it is easy to show that (gll’ g1-) = (03B3~, 7i). Indeed:
2022 First case. We know that g~ = 03B3~ and limr~0 r2(n-1)g~(r) = O. Hence we

will have gll = l’II if we check that limr-o r2(n-1)03B3~(r) = 0. But

The conclusion follows from the fact that a is bounded (see (1.2)).
. Second case. Similar argument D

Now we give an interesting consequence of the above proposition in the case
n = 3.

THEOREM 10: Let us suppose that
. 0 is a C1-diffeomorphism between B3* and 0/1 and the gij are of class C°

on B3* and verify (1.1) and (1-2).
. 0 is S0(3)-equivariant.
. 0 is weakly harmonic.
. a(r) = r2g~(r) is a nondecreasing function on (0, 1].

Then 0 is a C1*-minimizing harmonic map.

Proof : Let us remark first that we can always suppose that a(0) = 0. Indeed
since a is a positive and increasing map on (0, 1], a(r) admits a limit a(0)
when r is tending to zero. If a(0) is strictly positive, let us consider the map
from B3 to the 2-dimensional sphere of radius ~a(0), S2~a(0) which associates
to each x différent from zero ~a(0) x/|x|. This map is - modulo an isometry
- the harmonie tangent map to t7 at zero, To O. But it is known (see [BCL],
[Li] or [CG]) that To 0 is a minimizing map. Hence for every U in H1*(B3, 0/1),
ifY= 0-1 0 U,
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It suffices to show that

to obtain E(U)  E(U) by summing (2.13) and (2.14).
Hence we suppose now a(0) = 0 and a continuous on [0, 1]. And let us

assume for the moment being that there exists a positive bounded measure
d,u on [0, 1] such that

for almost every r (in the sense of Lebesgue’s measure).
Let us note K the map from [0, + oo ) to [0, + oo ) with

Then (H ) is equivalent to

We regularize the measure d,u by introducing a map ~ of class Cl from R to
[0, 1] whose support is contained in ( -1, 0) and with weight

Then we denote ~03B5(x) = (1/03B5)03B3(x/03B5) for 03B5 in (0, 1). We extend d,u outside
[0, 1] by 0 and we define a measurable map 1, by
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We let

Let a03B5 be defined by

Then

Writing (t, x) = (x/v, x) we have dy(x) dt = (X/V2) dp(x) dv and

Now we remark that since K(t/s)  1, the equality (2.15) implies that
a(r)  p([0, r]) for a.e. r and hence p((0)) = limr~0 03BC([0, r]) = 0.
Therefore by (2.15) for a.e. v in [0, 1] 

Hence we obtain

Let us introduce the coefficients gEl! and gE-1 on (0, 1] by
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We observe that

Indeed, since 0 is weakly harmonic, we have

Hence if À = limr~0 r4g11 (r) were strictly positive, then

But this is not possible because of the hypothesis (1.2) on gll. So

limr~0 r4g~(r) = 0, and it is easy to see that this implies that

lim,-o r4g03B5~ (r) = 0 using (2.19).
We observe also that

Now if U03B5 is a SO(3)-equivariant Riemannian manifold defined using metric
coefficients g03B5~ and g03B5~ on B3* and if U, is the corresponding C1-diffieomorphism
between B3* and o/1e, it is easy to verify that g03B5~ and g03B5~ are of class Cl on B3*,
that (1.1) and (1.2) are true, and that Ù, is weakly harmonic. Hence o/1e and
Oe satisfy all the hypothesis of Proposition 9 with ~(t) = [l03B5 (t)]/t, and Oe is
a C1*-minimizing harmonic map.

Let us write this: for any map UF of C1*(B3*, U03B5), let Y be ÛF 0 Ue, then

We fix Y and e, strictly positive. Let us remark that
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For a strictly positive we let úJex = Y-1(B3(0, a)). Since U  y belongs to
C1*(B3, W) in the case where B3* = B3B{0}, Y-1({0}) is a finite number of
points of B3 where V Y is invertible. We assume for the sake of commodity
that Y-1({0}) = {0}. (But this does not change the conclusions). Then we
apply the local inverse mapping theorem and if we choose a small enough
the restriction Yex of Y to coa is a bilipschitz C1-diffieomorphism between W,,,
and B303B1. Then if we let y = Y03B1(x)

where Ci is a positive constant which does not depend on a. Hence because
of (2.18) and (2.19) if we choose a small enough

But the metric coefficients gl, and g~ are bounded in the C° -topology on
B3BB3(0, a/2), this implies that if e belongs to (0, log 2) the coefficients g03B5~
and gFl are bounded on B3BB3(0, a), and if £ tends to zero g03B5~ [|Y(x)|] and
g03B5~[|Y(x)|] tend everywhere to g~[|Y(x)|] and to g~[|Y(x)|] respectively.
Hence we can apply Lebesgue’s theorem and we conclude that if e is small
enough

Hence it comes from (2.21) and (2.22) that, denoting U = U  Y,
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for 03B5 small enough. Of course the same inequality holds with CI and Û. We
show by this way that (2.20) implies

Now to finish the proof of Theorem 10 we prove (H).

LEMMA 11 : Let b be in W1,1((0, 1), R). If b is nondecreasing then there exists
a positive bounded measure d,u on [0, 1] such that

for almost every s in the sense of Lebesgue’s measure.

Proof: Since ~[0,s] K(t/s) d03B40(t) = 1 for s in (0, 1], where 60 is the Dirac

measure at zero, we may assume that b(0) = 0. We fix e strictly positive, we
consider K03B5(x) = K(x/[ 1 + 8]), and we first show that there exists a positive
map Â, in L1((0, 1), R) such that

Now we take the derivative of (2.24)

Let Hf be the map from (0, 1) x (0, 1) to [0, + oo ) defined by

Then we note TF the operator on L1(0, 1), R) which is defined by,

We remark that K’(x) = 1 2x3/~1 - x2  0, and consequently K’03B5(x) is
positive, Hf. and TF are positive, i.e. 1: maps nonnegative functions in

nonnegative functions.
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Let us show that 1: is an operator from L1((0, 1), R) to L1((0, 1), R) of
norm strictly smaller than 1. For any 03BB in L1((0, 1), R),

We have

and

Hence

and since [b’(s)]/[K03B5(1)] = (1 - T03B5)(03BB03B5(s)), we can invert the equation
(2.25) by

because 03A3+~0 TP03B5 converges in L(L1((0, 1), R)).
Furthermore the solution 03BB03B5 is nonnegative since 1: and b’ are positive. By

integrating (2.25), we find that 03BB03B5 is the solution of (2.24). Now we try to pass
to the limit when 8 tends to zero. Let J1¡; be the positive measure with
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dp,(t) = 03BB03B5(t) dt. We have

Hence we can extract a subsequence of E, which we still denote e for the sake
of convenience, such that 03BC03B5 converges weakly to a bounded positive measure
03BC, i.e.

Let us fix 80 positive and let us suppose that e  03B50, then

Let q be in C°([0, 1], [0, 1]) with support in [0, s) then

and the limit when e tends to zero gives using (2.26)

Now we pass to the limit when 80 tends to zero, using Lebesgue’s theorem

This inequality is true for every q with the above hypothesis. Hence

and

for every s such that
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Now we have

where

Let c(t) = ~1t [tK(y)]/y2 dy; it is easy to see that c, and c are continuous
on [9, 1 (c, and c are extended at zero by their limits) and that c03B5 converges
to c in the C°-topology. Then we pass to the limit in (2.28):

It follows from this and from (2.27) that

for a.e. s in the sense of the Lebesgue’s measure.
This terminates the proof of Lemma 11 and Theorem 10. Q.E.D.

THEOREM 12: Let us suppose that o¡¡ and lI verify all the hypothesis of Theorem
10 with the supplementary condition that (1.3) is true.
Then C is a minimizing harmonic map.

Proof: Same arguments as in the proof of Theorem 5. Q.E.D.

We have another interesting application of Theorem 4 in the case n = 4.

THEOREM 13: Let us suppose that
2022 U is a Cl-diffeomorphism between Bn8 and W and the gl/ are continuous

and verify (1.1) and (1.2).
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’0 C and e are S0(4)-equivariant.
’0 0 is weakly harmonic.
. r4gll(r) is a nondecreasing map on (0, 1]
le limr~0 r2g~ (r) exists and belongs to [0, + Ce), limr-+o r2g11 (r) = 0.

Then 0 is a C1*-minimizing harmonic map.

Proof: Using the same argument as in the proof of Theorem 10 we shall
suppose that limr~0 r2g~(r) = 0.
We will use Proposition 9 by proving that there exists a nonnegative

continuous map qJ on (0, 1 ] such that

The first condition is r4g~(r) = 2 ~r0 t3 ~(t) dt. We take cp(r) = (1/2r3)
(d/dr) [r4g~ (r)], which is nonnegative since r 4 g,, (r) is nondecreasing.
We know that limr~0 r2g.l (r) = 0 we must verify that

But

and our conditions follows from limr-+o r2gIJ (r) = 0.
This achieves the proof of Theorem 13. Q.E.D.

THEOREM 14: Let us suppose that C and 0/1 verify all the hypothesis of Theorem
13 further (1.3), then LI is a minimizing harmonic map.

Proof : See the proof of Theorem 13 and apply Theorem 5. Q.E.D.
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III. Consequences and examples

We now establish results in the cases n = 3 and n = 4 using Theorems 12
and 14.

We consider a SO(n)-equivariant Riemannian manifold u of dimension
n, C1-diffeomorphic to Bn or BnB{0}, i.e. there exists a C1-diffeomorphism X
between * and B§ where Bn* may be Bn or BnB{0} such that the metric at a
point u of u is given using two strictly positive functions yl and yjj of class
C° on B n which depend only on r by

(a) If BJ§ = BnB{0}.
We will assume that our Riemannian manifold 0# satisfy the compactness

conditions (1.1), (1.2) and (1.3) i.e. there exists strictly positive constants K,
and K2 such that

f’ -  +00 and the closure of YII([t, 1)) is a compact (3.2)
subset of (0, + ~).

We remark that (3.2) expresses that any meridian curve Mû) has a finite
arc-length where Mû) = X-1{r03C9/r e (0, 1)} and co belongs to Sn-1.

This allows us to consider the map s in C1((0, 1), (0, 1)) where 1 =

~10 ~03B3~(t) dt with

Then we shall call S the C1-diffeomorphism between Bn* and Bn (o, l)B{0} =
Bn*(l) defined by

And we shall call L the C1-diffeomorphism S  X between u and Bn*(l).
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(b) If Bn* = Bn.
We still assume (3.2) and let 1 = ~10 ~03B3~(t) dt; s given by (3.4) belongs

to C1([0, 1), [0, l )) and S defined by (3.5) is a C1-diffeomorphism between
Bn and Bn (o, l) = Bn*(l). Then L = S o X is a C1-diffeomorphism between
u and Bn*(l). Let us remark that in this case L is the inverse of the exponential
map from T0U to U.
The metric coefficients ÿii and Y.1 on W in the chart L are then given by

Clearly, ~ has the same behavior as 03B3~ described by (3.1). We remark that

Hence we shall suppose that X = L and that YII(r) = ~(r) = 1 on Bn*(l).
An important case for U is described as follows.
Let 1/ be a compact Riemannian manifold of class Cl with boundary,

which is diffeomorphic to Én or to BnBBn(0, 1 2) and SO(n)-equivariant. Then
we can find a C1-diffeomorphism between the interior of 1/, 1/’ and B*,
which will verify (3.1), (3.2) and also (3.3) when Y is diffeomorphic to
BnB{0}, and such that y,, (lx 1) = 1. Then we take U = 1/’.

EXAMPLE A: I is a closed bounded interval of R, r is an imbedding of I into
the meridian half-plane P+ = (0, + oo) x R of class CI, and V is the

hypersurface of revolution of Rn+1 of generatrix y[I]. A parametrization of
V is given by 0393I(r)(03C91e1 + ... + 03C9nen) + FI(r)en+1 1 where cU = (wl, ..., 03C9n)
belongs to Sn- l, r belongs to I and r(r) = (F,(r), 17,,(r».

EXAMPLE B : F is a SO(n)-equivariant map of class Cl from B" to R, i.e.

And Y’ is the graph of F, {(x, F(x))(x E Bn)}.
We have for n = 3.

THEOREM I5: Let W be a SO(3)-equivariant Riemannian manifold of dimension
3 which is C1-diffeomorphic to B3with the conditions (3.1), (3.2) and also (3.3)
when W is diffeomorphic to B3B{0}. Let us assume that r2y -L (r) is nondecreasing.
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Let 0 be a SO(3)-equivariant map.from B3 to °ll of class C1 on B3 with

Then if C is weakly harmonie, Ü is a minimizing harmonie map.

Remark: In Example B the condition r203B3~(r) is increasing is always true.

Proof of Theorem 15: Let YbeL 0 Ü. We let r = |x|, R(|Y(x)|) = |Y(x)|.
The energy of C7 is, with b(r) = r203B3~ (r).

We now use the fact that 0 is weakly harmonic. Let us remark that since U
is a C’-Riemannian manifold b is of class C’. We take a map cp in

C1c((0, 1), R) and we let 0(x) = ~(|x|)(x/|x|), then

In fact since R’ is of class C’ we can extend by density the definition of
E’(U, 4» to the case where cp is integrable with compact support in (0, 1) and
~’ is a bounded measure and for such a cp, E’(U, 4» is still zero.
From (3.6) and the fact that É is of class C’ we deduce that R is surjective

and that R’ is strictly positive in a neighbourhood of zero. Let 03B4 be in (0, 1)
and ro be in (0, ô) such that R’(r0) &#x3E; 0 for any r in (ro, 1) we consider the
test map with cp given by

Then £’(0, 0) = |S2|[R’(r0)r20 - R’(r) r2 + ~rr0 b’[R(r)]dr] = 0.
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This implies since b is increasing

hence

Finally this leads to

Since R is a C’-diffeomorphism between (0, 1) and (0, 1), C is a Cl-diffeo-
morphism between B3* and W.
Hence we can use the chart 0-1 on W, and we verify easily that the

condition (3.1), (3.2) and (3.3) are always true using this chart. Particularly
the second assertion of (3.2) follows from (3.7).
We can use Theorem 14, (note that a(r) = b(R(r)) is increasing) this

achieves the proof. Q.E.D.

We now give another consequence of Theorem 12.

PROPOSITION 16: Let E be the Riemannian manifold constructed by putting on
R x S2 the metric (ds)2 = (dt)2 + 03B3(t)(d03C9)2 where (t, w) belongs to R x S2
and where y is a function of class C’ from R to (0, + oo). Let ù be a
SO(3)-equivariant map from B 3 to 1 which we will express using a function s
in C1((0, 1], R) by u(r03C9) = (s(r), 03C9). We suppose that

(y 0 s)’ is positive on (0, 1] and s((0, 1]) is bounded in R. (3.8)

Then if u is weakly harmonic, il is minimizing harmonic, i.e. minimizes the

energy among the maps from B3 to 1 which agree with u on aB3.

Proof : We can always suppose that s((0, 1 ]) = [0, 1) because of (3.8), where
1 is in (0, + ~). We define a map f from R to [0, 1) by

2022 if y E [0, l], f(y) = y.
. if y e [0, 1] and if y(y) E y([O, 1]).
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Since y 0 s is strictly increasing y is a diffeomorphism between [0, l) and
y([0, 1)) and f(y) is the unique real of [0, 1] such that

2022 if y ~ [0, l] and if 03B3(y)  y(o), f(y) = 0.
Then f is well defined and Lipschitz because of (3.9) and (3.10).
If y(y) belongs to y([0, 1 ]), y[f(y)] = y(y) implies

and this implies |f’(y)|  1 because of (3.10).
If 03B3(y) belongs to [g(0), + oo), If’(y)1 | = 0  1.

In both cases one verifies too that 03B3(f(y))  y( y). Now we take cp a map
from B3 to E which agrees with ù on ôB3 then if cp = (qJl’ qJ2) E R x 82,

Then letting  be (f  ~1, ~2) we have

Hence it suffices to verify that ù minimizes the energy functional among the
maps from B3 to the image of ù, [0, l) x S2 . And this follows from Theorem
12. Q.E.D.

EXAMPLE 1: The following example has been constructed by Gulliver and
White in [GW]. Here n = 3 and 03A3 is a Riemannian manifold as in Proposition
16 with

Then we put u(r03C9) = (s(r), 03C9) with
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In [GW] Gulliver and White ask if û is a minimizing harmonic map. It

follows from Proposition 16 that the answer is yes. We recall that the interest
of û is that the blow-up sequence û, (x) = u(03BBx) tends to its homogeneous
tangent map more slowly than any positive power of 03BB when 03BB tends to zero,
see [GW].

EXAMPLE 2: This is essentially the same example as the above example but
in dimension 4. We take

and s(r) = (1 - 2 log r)-1/2.
Then a variant of Proposition 16 in the case of the dimension 4 can be

proved without difficulty using Theorem 14, and we can show that il is a

minimizing harmonic map if we verify that r4gll(r) is increasing (where gll has
the sense of Theorem 14), i.e. we must show that

r4(s’(r))2 is increasing.

But it is easy to compute that (d/dr)[r4(s’(r))2]  0.

Now we present an analysis of SO(3)-equivariant harmonic maps into a
SO(3)-equivariant manifold of dimension 3 of class C2. The method is a
straightforward adaptation of the method of [JK]. This study together with
the other results of this section will give in some cases a minimizing solution.

THEOREM 17: Let V be a compact Riemannian manifold of class c2 with
boundary of dimension 3, which is SO(3)-equivariant and C2 -di, ffeomorphism
to B3. We describe V using the metric given by YII (s) = 1 and y 1- on the closed

ball B3(l) as presented at the beginning of this section. Here we assume that
03B3~ belongs to C2([0, l], (0, + ~)) and we suppose that, b’(s) is strictly positive
on (0, l) where b(s) = s203B3~ (s). Then

. If either b’(1) &#x3E; 0 or

there exists a SO(3)-equivariant minimizing harmonic map ù of class c2
from B3 to V with ü(x) = lx on ~B3.

8If



210

u*(x) = l(x/|x|) minimizes the energy among the maps which agree with u*
on aB3.

Proof: We try a SO(3)-equivariant harmonic map ù of class C2 on B3 with
finite energy. We pose u(r03C9) = R(r) 03C9 where R is suppose to be a map of
class C2 from [0, 1] to [0, 1]. Then as proved in Theorem 15 R must satisfy

for every cp in C1c ((0, 1), R). And since R is of class C2 this implies

with the boundary conditions

and the finite energy condition

(a) We make the change of variable t = log r and define the map 03BB of class

Cl from (- oo, 0) to [0, 1] with

Then the required equations (3.13), (3.14) and (3.15) become respectively

where the dots denote the derivative with respect to t.

The appropriate way to study (3.16), (3.15) and (3.16) is to write this

equation in the phase space. We let
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then x(t) is an integral curve of the vector field

i.e.

Since 03B3~ is bounded from above and from below and since b(s) - s2g1- (s),
we have b(O) = b"(0) = 0 but b"(0) = 203B3~(0) &#x3E; 0.

This implies that the point (0) is critical and the linearized system at this
point is

The eigenvalues and the corresponding eigenvectors are

Hence (0, 0) is a saddle point.
We extend the function b to R in a function (still denoted by b) which is

a nonnegative function of class C2 with compact support; in the case where
b’(l ) = 0 (and b"(l)  0) we will suppose that b reaches its maximum at
s = 1 and is symmetric with respect to 1 i.e. b(2l - s) = b(s).
(b) We construct the solution of our problem.
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First using a result of Hartman ([Ha2] VIII.3, Theorem 3.4) we know that
there exists a solution X = (Q, P) on ( - oo , 0] of (3.19) such that

and

In fact X can be extended on R because the vector field f(03BE) has a linear
growth for large values of ~03BE2 + 03B62.
Let V be the map on R with

From (3.19) follows

Since P and Q are bounded when t tends to - oo,

From (3.23) and (3.24) we deduce that V(t) e’ is strictly negative on R or:

Hence the curve X does not go out of the bounded open set {(03BE, Q E R’/
(2  2b(03BE)}.
Furthermore on the segment (0, 1) x {0} the vector field is pointing

upward. Let K1 be {(03BE, 03B6) E R2/(2  2b(03BE), 0  03BE  l, 03BE &#x3E; 0}. Then either
the curve X goes out of KI through the segment {l} x (0, ~2b(l)), or the
curve stays in K1.
(c) Now we can handle the case b’(l) strictly positive. Let us suppose that
X goes never out of K1, then using (3.21 ) and (3.22) we know that there exists
t, in R such that
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And since b’(l) &#x3E; 0, there exists b positive such that

which implies using (3.19)

or

This together with (3.19) implies that there exists t2 in [t1, +0 ~) such that X
goes out of Kl at t1 i.e., Q(tl ) - 1. Hence X goes out of KI in all cases where
b’(l) &#x3E; 0.

This gives us a solution to the problem (3.16), (3.17) and (3.18) which is
strictly increasing on (- oo, 0] by taking X(t) and by making a translation
on t. Using Theorem 15 this gives the conclusion of the present theorem.
(d) We assume that b’(l ) is zero. The curve X stays in K2 = ((03BE, Ç) e R2/
03B62  2b(03B6), 0  03BE  2l} and X has three critical points in K2 : (0, 0), (l, 0)
and (2l, 0).

Using results of Lasalle [La], X(t) tends to one of these critical points
when t tends to + ~.

But from (3.21) and (3.22) it comes that limt~~ V(t) = 0 and snce
V(t) = - 2P(t)2 we have

which precludes limt~ + ~ V(t) to be positive or zero. This implies that X(t)
cannot tend to (0, 0) or (21, 0) when t tends to + oo but only to (1, 0).
Hence we study what happens at (1, 0). The linearized system is

First case b"(l)  -1 4.
Then the eigenvalues are complex with a strictly negative real part
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We use Hartman’s theorem ([Ha2], VIII.3): the point X(t) is spiralling
around (1, 0) and tends to (1, 0) when t tends to + oo . Hence there exists tl 
in R with

This gives, modulo a translation on t, the solution of the problem.

Second case - 1 4  b"(l)  0.

Then we have two strictly negative real eigenvalues.

We assume that b’(s)  b"(l)(s - l). Then let K3 be {(03BE, 03B6) E R2/0  03BE  1,
03B62  2b(03BE), 03B6 &#x3E; 0, 03B6  039B+(03BE - 1)). On the boundary segment {(03BE,
A+ (ç - 1»l of K3, we have

because of the relation 039B2+ + A+ = b"(l).
And (3.28) implies that f is pointing inside K3. This proves that X does

not go out of K3, and we do not find our solution. But X(t) tends to (1, 0)
when t tends to + oo , and hence the value l(1 - e) is reached by Q(t) in a
finite time t03B5 for any strictly positive B. This gives the solution of the
following modified problem.
We consider V03B5 the compact Riemannian submanifold of 1/ equal to

L-1[B3(l(1 - 03B5))]. Then from Theorem 15 and the above computation
u03B5(r03C9) = Q(t£ + log r) 03C9 is a minimizing harmonic map from B3 to

U03B5 = V03B5 with boundary conditions u£(x) = l(1 - 03B5)(x/|x|) on ~B3. Hence
for every map Y from B3 to B3(l) with Y(x) = lx on ôB3 
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Now if E tends to zero, t03B5 tends to + ce and hence u, (r03C9) tends to Iw. We pass
to the limit in (3.29) using boundedness and continuity of 03B3~ and obtain

This proves that in the case (3.12) l(x/|x|) minimizes the energy among the
maps which agree with u* on ôB3. This achieves the proof of Theorem 17.

Q.E.D.

EXAMPLE 3: We consider for a in (0, + ~) the ellipsoid

Then we consider the maps u of H1(B3, R4) such that u(x) belongs to fffa for
a.e. x in B3 and which verify in the trace sense u(x) = (x, 0) on ôB3. We try
to find a map which minimizes the energy among these maps. Because of the

symmetry of 03B5a it suffices to consider the map to 03B5+u = {x E 03B5a/x4  0}.
The problem was first solved for a - 1, n  7 in [JK], a  1 and n  7 in
[B] and a x 1 and n  3 in [He]. Furthermore Baldes showed in [B] that
u*(x) = (xllxl, 0) could be minimizing only when a2  [4(n - 1)]/[(n - 2)2] 
for n  3. It follows from all these papers that one can make the following
conjecture for n  3

is minimizing

there exists a SO(n)-equivariant minimizing map
of class COC on Bn.

The unknown cases were a &#x3E; 1 and 3  n  6. Here we solve the case
n - 3 using Theorem 17

is minimizing

there exists a SO(3)-equivariant minimizing map of class
C~ on B3.

We use the following parametrization of 03B5+a
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Then the abscissa along a meridian curve is

And b(s) is defined by b[s(03B8)] = sin203B8.
Hence

Hère 1 = ~03C0/20 ~a2 sin2 03C4 + cos2 03C4 d03C4, b’(l) = 0 and b"(l) = -2/a2.
If a2  8 or b"(l)  -1 4 then we have a smooth S0(3)-equivariant mini-

mizing map.
If a2  8 or b"(l)  - 1 4. We must then verify that

to conclude i.e.

By letting

the required inequality is H(0) x 0 which follows from

EXAMPLE 4: This examples shows that Theorem 12 is not optimal in the
sense that a(r) = r2g-L (r) may be decreasing somewhere but the harmonic
map considered can be minimizing. Let 8 be strictly positive and small
enough and let 9 be the map from [0, 1] to [0, 1] defined by
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Then we take

And one shows easily that r2g~(r) must be decreasing somewhere in

[1 - e, 1] if e is chosen small enough. This property is preserved if we
replace ~ by a regular approximation of (p. Then we can apply Proposition
7 and the metric coefficients which we obtained define a minimizing harmonic
map.

Appendix A

PROPOSITION A: Let us assume that
. U is a C’-diffeomorphism between Bn* and W and the gii are of class C’

on Bn* and verify (1.1), (1.2) and (1.3).
Then, ~U ~ H1*(Bn, U), Ve &#x3E; 0, 3U: E C1*(Bn, U)

Proof: For every measurable subset A of Bn, we will write

We give the proof in the case where {a1, ... , ak} = {0} this simplifies the
notations and does not change the sense of the proof. Then the hypotheses
(1.1), (1.2) and (1.3) become

~x ~ Bn*, ~y ~ Rn, if y is orthogonal to x,

Vx E Bn*, Vy E Rn, if y is parallel to x,



218

where K1 and K2 are positive constants, and h is a continuous map from
(0, 1] to [03B4, + oo) (03B4 &#x3E; 0) and belongs to L’([0, 1], R).
(a) Change of chart. It is easy to show that there exists real numbers ro and
e. in (0, 1 3) and a map 1: in C°([0, 1], [0, 1]) n C1((0, 1], [0, 1]) with

Then we consider the map T from BnB{0} to BnBBn(0, r0) defined by

We can construct a new chart on U by taking T o -0 -1. Let 03B3ij be the metric
coefficients of W in this chart.

Let x be in Bn(o, 03B50)B{0},
. If z is orthogonal to x, ( = (03C4(|x|)/|x|)z and

hence using (A.2)

2022 If z is parallel to x, 03B6 = 03C4’(|x|)z and

hence using (A.3)
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And (A.5) and (A.6) together with similar estimates on 03B3ij using (1.1) for
x in BnBBn(0, 03B50) imply that everywhere

where K3 and K4 are strictly positive constants.
(b) Now we work on BnBBn(0, r0). We set

03C8 is defined on BnBY-1({0}). Let us remark that it follows from (A.7) that
03C8 belongs to H1(Bn, Bn). For e, in (0, ro) we write

We have

and, with abuse of notation

Using (A.8) and (A.7) and the fact that |03C8| 1  ro a.e., one shows that the first
term on the right hand is bounded by a constant time 03B51 ~ 03C8 Il’,. The second
term tends to zero; it suffices to apply Lebesgue’s theorem.
Hence for any strictly positive e there exists e, in (0, ro ) such that

Let us denote r2 = (1 - El ) ro + el and r1 = (ro + r2/2). Hence ro 

r1  r2 and the image of 03C803B51 belongs to BnBBn(0, r2).
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(c) We consider a sequence t/1 N of maps from Bn to Bn of class Cl on Bn such
that 03C8N|~Bn = 03C8|~Bn and such that

We will modify the maps t/1N. We apply a method inspired by the proof of
Theorem 4 of Bethuel and Zheng in [BZ]. First let us introduce the technical
objects which are required.

Let ~ be a function in C1(Bn, [0, 1]) with

For y in Bn(0, (r0/8)), we let 03C8N,y = 03C8N + y~  03C8N.
Let 82 be in (0, inf (5r0/24, 03B50)) and let v be in C1((0, 1], [0, 1]) with

Then 03C0 will be the map of C1(BnB{0}, BnBBn(o, rI)) defined by

We let then (D,@ y = n o .pN,y.
Since 03C8N,y is of class C1, we can apply Sard’s theorem to show that for a.e.

y in Bn(0, ro/8), (DN,y is of class CI on Bn except on a finite set where ~03C8N,y
is invertible, and that (DN@ y belongs to H’(B n, Bn).

Let us evaluate |~0393N,y|2
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We have

and from (A.13) we compute that there exists a strictly positive constant C,
such that

Hence we find a constant C2 strictly positive such that

Then as in the paper of Hardt and Lin [HL] (see also [HKL], p. 556), we
apply Fubini’s theorem denoting Bn(r) = Bn(0, r),

where C3 is a strictly positive constant (see (A.3) and (A.4)).
Hence there exists y. in Bn(r0/8) such that 03A6N,y0 has a finite number of

singularities and such that
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Since 03C803B51 (x) belongs to BnBBn(0, r2 ) a.e. it follows using (A.11) that the
measure of 03C8-1N[Bn(0, rI)] tends to zero when N tends to + 00. Now we use
(A.10). We can write 03C8N = 03C803B51 + rN where rN tends to zero in the H’-topology
and

The first term on the right tends to zero because |03C8-1N(Bn(r1)) tends to zero
and the second one because rN tends to zero in H1. And it follows from
(A.16) that

Hence

And this inequality together with (A.10), (A.18) and (A.7) imply using
Lebesgue’s theorem that |E(03A6N) - E(03C803B51)| tends to zero when N tends to
+ oo. Then we choose N large enough to have

This gives with (A.9)

Moreover if we set YN = T-1((03A6N) = [(T-’ - v)(|03C8N,y0|)/03C8N,y0|]03C8N,y0 it is

easy to verify that YN is of class Cl even on Y-1N({0}) and that Y-1N({0}) is
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finite. Furthermore, because of the definition of r and v, 03C4-1  03BD agrees with
the identity map on a neighbourhood of {0}. And since Sard’s theorem
implies that we can choose 03C8N, y0 such that ~03C8N,y0 is invertible on 03C8-1N,y0{0}, we
can obtain hence Y, such that V YN is invertible on Y-1N{0}.

This achieves the proof of Proposition A. D

Appendix B

This appendix is devoted to the Gauss curvature of g. We use the notations
of Theorem 2 and we denote ôa/ôxl by a, ~b/~x1 by fi. We have the Cauchy
relations

Let 03BC be a map of class C2 from B2 into R such that

Let g* be the metric on B2 defined by

Finally 03BC2 - a2 - b2 is denoted d.
The Christoffel symbols of g* are, with standard notations,
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Still with standard notations, one finds after computations (noting that

~03B1/Nx1 = ~03B2/~x2, ~03B1/~x2 = -~03B2~x1)

and similarly

Finally if K* denotes the Gauss curvature of g* we find

In particular if 03BC = (lcpl2 + 03B8)1/2 with 0 E C2(B2, (0, ex))) then
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with 03C8 = a + i03B2. We have

From (B.1) and (B.2) we get

Finally we recall that the Gauss curvature of the metric el/2«dx)2 + (dy)2) is

In particular, if Ko is negative, K* is also negative. If wetake0 = (2 - r2)-4
we get

Appendix C

In this Appendix all the Riemannian surfaces and the functions considered
are of class C°° .

Let (N, g) be a compact Riemannian surface of negative Gauss curvature,
with boundary. We prove

LEMMA C: There exists a complete non compact Riemannian surface (1, 0) of
negative Gauss curvature such that

Proof: The boundary of N is the union of a finite number of disjoint closed
curves 03931, r2 , ... , 0393n. We consider one of this curve Fi and geodesic
orthogonal coordinates along this curve:
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with Oi E SI and ti E ( - b1, 0] for some positive real number bi. Thje curve
Fi is tl 1({0}). The Gauss curvature of (N, g) on tî (( - 03B4l, 0]) is

Since K is negative, one can easily construct, for C large enough, a function
f of class COO from ( - 03B4i, + ~) x S’ into (0, + ~) such that

and

Let E be the surface obtained by gluing, for i = 1, ..., n, a cylinder
LI = [0, + oo ) x ,S’ along 0393i. We provide 03A3 with the metric defined by

Clearly the metric is smooth and (L, 6) is a complete non compact
Riemannian surface which satisfies (C.1) and (C.2). Moreover, by (C.4), the
Gauss curvature of (03A3, 6) is negative. D

Remark:

a. The surface (L, cr) satisfies Morrey’s uniformity condition [M]: there
are two positive constants a, A such that any point of E is in the domain of
a coordinate chart n : V - R2 whose image is the unit ball and

for any y in V and any Y in Ty (Y-).
b. If, for 03C0 in [0, + ~), we define
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then for 03C4  1 Et is convex; see [Ham] p. 6-7 for a definition of convex. This
allows to use in the proofs of theorem 3’ (when iJM =1= 0) and theorem 3 the
results of [Ham] instead of [M], [SU], [LI], [L2] or [S2].

Acknowledgements

The authors are pleased to acknowledge A. Ancona, J. P. Bourguignon,
R. Gulliver and P. Pansu for fruitful discussions.

Note added in proof

The theorem of [Hal] used in that paper has been previously proved by
S.I. Al’ber in Soviet Math. Dokl. 5 (1964) 700-704.
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