@article{CM_1990__73_1_31_0, author = {Jones, John W.}, title = {$p$-adic heights for semi-stable abelian varieties}, journal = {Compositio Mathematica}, pages = {31--56}, publisher = {Kluwer Academic Publishers}, volume = {73}, number = {1}, year = {1990}, mrnumber = {1042453}, zbl = {0743.14031}, language = {en}, url = {http://archive.numdam.org/item/CM_1990__73_1_31_0/} }
Jones, John W. $p$-adic heights for semi-stable abelian varieties. Compositio Mathematica, Tome 73 (1990) no. 1, pp. 31-56. http://archive.numdam.org/item/CM_1990__73_1_31_0/
1 "Le groupe de Brauer III", Dix exposes sur la cohomologie des schemes. | Zbl
:2 Iwasawa L-functions of multiplicative Abelian varieties. Duke Math. J. (to appear). | MR | Zbl
:3 Rational points on abelian varieties with values in towers of number fields. Invent. math. 18, 183-266 (1972). | MR | Zbl
:4 Universal extensions and one-dimensional crystalline cohomology. Lecture Notes in Math., vol. 370. Berlin-Heidelberg-New York: Springer (1974). | MR | Zbl
, :5 Canonical heights via biextensions", in Arithmetic and Geometry, vol I, Birkäuser, 195-238 (1983). | Zbl
, : "6 On p-adic analogues of the conjectures of Birch and Swinnerton-Dyer. Invent. math. 84, 1-48 (1986). | MR | Zbl
, , :7 Duality theorems for Neŕon models. Duke Math. J. 53 1093-1124 (1986). | MR | Zbl
:8 Elliptic Tate curves over local Γ-extensions. Math. Notes of U.S.S.R. 13 322-327 (1973). | Zbl
:9 p-adic height pairings I. Invent. math. 69, 401-409 (1982). | MR | Zbl
:10 Iwasawa L-functions of varieties over algebraic number fields. A first approach. Invent. math. 71, 251-293 (1983). | MR | Zbl
:11 p-adic height pairings II. Invent. math. 79, 329-374 (1985). | MR | Zbl
: