On the classification of primitive ideals for complex classical Lie algebras, I
Compositio Mathematica, Tome 75 (1990) no. 2, pp. 135-169.
@article{CM_1990__75_2_135_0,
     author = {Garfinkle, Devra},
     title = {On the classification of primitive ideals for complex classical {Lie} algebras, {I}},
     journal = {Compositio Mathematica},
     pages = {135--169},
     publisher = {Kluwer Academic Publishers},
     volume = {75},
     number = {2},
     year = {1990},
     mrnumber = {1065203},
     zbl = {0737.17003},
     language = {en},
     url = {http://archive.numdam.org/item/CM_1990__75_2_135_0/}
}
TY  - JOUR
AU  - Garfinkle, Devra
TI  - On the classification of primitive ideals for complex classical Lie algebras, I
JO  - Compositio Mathematica
PY  - 1990
SP  - 135
EP  - 169
VL  - 75
IS  - 2
PB  - Kluwer Academic Publishers
UR  - http://archive.numdam.org/item/CM_1990__75_2_135_0/
LA  - en
ID  - CM_1990__75_2_135_0
ER  - 
%0 Journal Article
%A Garfinkle, Devra
%T On the classification of primitive ideals for complex classical Lie algebras, I
%J Compositio Mathematica
%D 1990
%P 135-169
%V 75
%N 2
%I Kluwer Academic Publishers
%U http://archive.numdam.org/item/CM_1990__75_2_135_0/
%G en
%F CM_1990__75_2_135_0
Garfinkle, Devra. On the classification of primitive ideals for complex classical Lie algebras, I. Compositio Mathematica, Tome 75 (1990) no. 2, pp. 135-169. http://archive.numdam.org/item/CM_1990__75_2_135_0/

1 Barbasch, D. and Vogan, D., Primitive ideals and orbital integrals in complex classical groups, Math. Ann. 259 (1982) pp. 153-199. | MR | Zbl

2 Duflo, M., Sur la classification des idéaux primitifs dans l'algebre enveloppante d'une algebre de Lie semisimple, Ann. of Math. 105 (1977) pp. 107-120. | MR | Zbl

3 Garfinkle, D., Annihilators of irreducible Harish-Chandra modules of U(p, q) and GL(n, R), in preparation.

4 Jantzen, J., Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics vol. 750, Springer, Berlin, 1979. | MR | Zbl

5 Joseph, A., A characteristic variety for the primitive spectrum of a semisimple Lie algebra, preprint. Short version in: Non-Commutative Harmonic Analysis, ed. by Carmona, J., and Vergne, M., Lecture Notes in Mathematics vol. 587, pp. 102-118, Springer, Berlin 1977. | MR | Zbl

6 Joseph, A., Towards the Jantzen Conjecture, II, Comp. Math. 40(1980), pp. 69-78. | Numdam | MR | Zbl

7 Kazhdan, D., and Lusztig, G., Representations of Coxeter groups and Hecke algebras, Inv. Math. 53 (1979), pp. 165-184. | MR | Zbl

8 Lusztig, G., A class of irreducible representations of a Weyl group, Proc. Kon. Ned. Akad. van Wetenschappen, ser. A., 82 (1979), pp. 323-335. | MR | Zbl

9 Shi, J.-Y., The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups, Lecture Notes in Mathematics, vol. 1179, Springer, Berlin, 1986. | MR | Zbl

10 Vogan, D., A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra, Math. Ann. 242 (1979), pp. 209-224. | Zbl

11 Vogan, D., Irreducible characters of semi-simple Lie groups IV: character multiplicity duality, Duke Math. J. 49 (1982), pp. 943-1073. | MR | Zbl